549 research outputs found

    Kinetic modeling of microscopic processes during electron cyclotron resonance microwave plasma-assisted molecular beam epitaxial growth of GaN/GaAs-based heterostructures

    Get PDF
    Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of delta-GaNyAs1–y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540–580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1–y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es ~ 0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes

    Observation of a (2X8) surface reconstruction on Si_(1-x)Ge_x alloys grown on (100) Si by molecular beam epitaxy

    Get PDF
    We present evidence supporting the formation of a new, (2×8) surface reconstruction on Si_(1−x)Ge_x alloys grown on (100) Si substrates by molecular‐beam epitaxy. Surfaces of Si_(1−x)Ge_x alloys were studied using reflection high‐energy electron diffraction (RHEED) and low‐energy electron diffraction (LEED) techniques. RHEED patterns from samples with Ge concentrations, x, falling within the range 0.10–0.30 and grown at temperatures between 350 and 550 °C, exhibit n/8 fractional‐order diffraction streaks in addition to the normal (2×1) pattern seen on (100) Si. The presence of fractional‐order diffracted beams is indicative of an eight‐fold‐periodic modulation in electron scattering factor across the alloy surface. LEED patterns from surfaces of samples grown under similar conditions are entirely consistent with these results. In addition, the LEED patterns support the conclusion that the modulation is occurring in the direction of the dimer chains of a (2×1) reconstruction. We have examined the thermal stability of the (2×8) reconstruction and have found that it reverts to (2×1) after annealing to 700 °C and reappears after the sample temperature is allowed to cool below 600 °C. Such behavior suggests that the reconstruction is a stable, ordered phase for which the pair‐correlation function of surface Ge atoms exhibits an eightfold periodicity in the "1" direction of a Si‐like (2×1) reconstruction. We also present a simulation in the kinematic approximation, confirming the validity of our interpretation of these finding

    Microscopic processes during electron cyclotron resonance microwave nitrogen plasma-assisted molecular beam epitaxial growth of GaN/GaAs heterostructures: Experiments and kinetic modeling

    Get PDF
    A set of delta-GaNyAs1–y/GaAs strained-layer superlattices grown on GaAs (001) substrates by electron cyclotron resonance (ECR) microwave plasma-assisted molecular beam epitaxy (MBE) was characterized by ex situ high resolution X-ray diffraction (HRXRD) to determine nitrogen content y in the nitrided GaAs monolayers as a function of growth temperature T. A first order kinetic model is introduced to quantitatively explain this y(T) dependence in terms of an energetically favorable N for As anion exchange and thermally activated N-surface desorption and surface segregation processes. The nitrogen surface segregation process, with an estimated activation energy Es ~ 0.9 eV appears to be significant during the GaAs overgrowth of GaNyAs1–y layers, and is shown to be responsible for strong y(T) dependence
    • 

    corecore