1,678 research outputs found

    Structural Phase Transition in the Superconducting Pyrochlore Oxide Cd2Re2O7

    Full text link
    We report a structural phase transition found at Ts = 200 K in a pyrochlore oxide Cd2Re2O7 which shows superconductivity at Tc = 1.0 K. X-ray diffractionexperiments indicate that the phase transition is of the second order, from a high-temperature phase with the ideal cubic pyrochlore structure (space group Fd-3m) to a low-temperature phase with another cubic structure (space group F-43m). It is accompanied by a dramatic change in the resistivity and magnetic susceptibility and thus must induce a significant change in the electronic structure of Cd2Re2O7.Comment: 4 pages, 4figures, proceeding for ISSP

    The second phase transition in the pyrochlore oxide Cd2Re2O7

    Full text link
    Evidence for another phase transition at 120 K in the metallic pyrochlore oxide Cd2Re2O7, following the structural transition at 200 K and followed by the superconducting transition at 1.0 K, is given through resistivity, magnetoresistance, specific heat, and X-ray diffraction measurements. The results indicate unique successive structural and electronic transitions occurring in the pyrochlore compound, revealing an interesting interplay between the crystal and electronic structures on the itinerant electron system in the pyrochlore lattice

    Rotational Evolution During Type I X-Ray Bursts

    Get PDF
    The rotation rates of six weakly-magnetic neutron stars accreting in low-mass X-ray binaries have most likely been measured by Type I X-ray burst observations with RXTE. The nearly coherent oscillations detected during the few seconds of thermonuclear burning are most simply understood as rotational modulation of brightness asymmetries on the neutron star surface. We show that, as suggested by Strohmayer and colleagues, the frequency changes of 1-2 Hz observed during bursts are consistent with angular momentum conservation as the burning shell hydrostatically expands and contracts. We calculate how vertical heat propagation through the radiative outer layers of the atmosphere and convection affect the coherence of the oscillation. We show that the evolution of the rotational profile depends strongly on whether the burning layers are composed of pure helium or mixed hydrogen/helium. Our results help explain the absence (presence) of oscillations from hydrogen-burning (helium-rich) bursts that was found by Muno and collaborators. We investigate angular momentum transport within the burning layers and the recoupling of the burning layers with the star. We show that the Kelvin-Helmholtz instability is quenched by the strong stratification, and that mixing between the burning fuel and underlying ashes by the baroclinic instability does not occur. However, the baroclinic instability may have time to operate within the differentially rotating burning layer, potentially bringing it into rigid rotation.Comment: To appear in The Astrophysical Journal; minor corrections made to tables and figure

    Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars

    Get PDF
    Nuclear reactions occurring deep in the crust of a transiently accreting neutron star efficiently maintain the core at a temperature >5e7 K. When accretion halts, the envelope relaxes to a thermal equilibrium set by the flux from the hot core, as if the neutron star were newly born. For the time-averaged accretion rates typical of low-mass X-ray transients, standard neutrino cooling is unimportant and the core thermally re-radiates the deposited heat. The resulting luminosity has the same magnitude as that observed from several transient neutron stars in quiescence. Confirmation of this mechanism would strongly constrain rapid neutrino cooling mechanisms for neutron stars. Thermal emission had previously been dismissed as a predominant source of quiescent emission since blackbody spectral fits implied an emitting area much smaller than a neutron star's surface. However, as with thermal emission from radio pulsars, fits with realistic emergent spectra will imply a substantially larger emitting area. Other emission mechanisms, such as accretion or a pulsar shock, can also operate in quiescence and generate intensity and spectral variations over short timescales. Indeed, quiescent accretion may produce gravitationally redshifted metal photoionization edges in the quiescent spectra (detectable with AXAF and XMM). We discuss past observations of Aql~X-1 and note that the low luminosity X-ray sources in globular clusters and the Be star/X-ray transients are excellent candidates for future study.Comment: 5 pages, 2 ps figures, uses AASTEX macros. To appear in ApJ letters, 10 September 1998. Revised to conform with journal; minor numerical correction

    New beta-Pyrochlore Oxide Superconductor CsOs2O6

    Full text link
    The discovery of a new beta-pyrochlore oxide superconductor CsOs2O6 with Tc = 3.3 K is reported. It is the third superconductor in the family of beta-pyrochlore oxides, following KOs2O6 with Tc = 9.6 K and RbOs2O6 with Tc = 6.3 K. The Tc of this series decreases with increasing the ionic radius of alkaline metal ions, imposing negative chemical pressure upon the Os pyrochlore lattice.Comment: submitted to J. Phys. Soc Jp

    Criticality and convergence in Newtonian collapse

    Get PDF
    We study through numerical simulation the spherical collapse of isothermal gas in Newtonian gravity. We observe a critical behavior which occurs at the threshold of gravitational instability leading to core formation. For a given initial density profile, we find a critical temperature, which is of the same order as the virial temperature of the initial configuration. For the exact critical temperature, the collapse converges to a self-similar form, the first member in Hunter's family of self-similar solutions. For a temperature close to the critical value, the collapse first approaches this critical solution. Later on, in the supercritical case, the collapse converges to another self-similar solution, which is called the Larson-Penston solution. In the subcritical case, the gas bounces and disperses to infinity. We find two scaling laws: one for the collapsed mass in the supercritical case and the other for the maximum density reached before dispersal in the subcritical case. The value of the critical exponent is measured to be ≃0.11\simeq 0.11 in the supercritical case, which agrees well with the predicted value ≃0.10567\simeq 0.10567. These critical properties are quite similar to those observed in the collapse of a radiation fluid in general relativity. We study the response of the system to temperature fluctuation and discuss astrophysical implications for the insterstellar medium structure and for the star formation process. Newtonian critical behavior is important not only because it provides a simple model for general relativity but also because it is relevant for astrophysical systems such as molecular clouds.Comment: 15 pages, 8 figures, accepted for publication in PRD, figures 1 and 3 at lower resolution than in journal version, typos correcte

    Periodic Thermonuclear X-ray Bursts from GS 1826-24 and the Fuel Composition as a Function of Accretion Rate

    Full text link
    We analyze 24 type I X-ray bursts from GS 1826-24 observed by the Rossi X-ray Timing Explorer between 1997 November and 2002 July. The bursts observed between 1997-98 were consistent with a stable recurrence time of 5.74 +/- 0.13 hr. The persistent intensity of GS 1826-24 increased by 36% between 1997-2000, by which time the burst interval had decreased to 4.10 +/- 0.08 hr. In 2002 July the recurrence time was shorter again, at 3.56 +/- 0.03 hr. The bursts within each epoch had remarkably identical lightcurves over the full approx. 150 s burst duration; both the initial decay timescale from the peak, and the burst fluence, increased slightly with the rise in persistent flux. The decrease in the burst recurrence time was proportional to Mdot^(-1.05+/-0.02) (where Mdot is assumed to be linearly proportional to the X-ray flux), so that the ratio alpha between the integrated persistent and burst fluxes was inversely correlated with Mdot. The average value of alpha was 41.7 +/- 1.6. Both the alpha value, and the long burst durations indicate that the hydrogen is burning during the burst via the rapid-proton (rp) process. The variation in alpha with Mdot implies that hydrogen is burning stably between bursts, requiring solar metallicity (Z ~ 0.02) in the accreted layer. We show that solar metallicity ignition models naturally reproduce the observed burst energies, but do not match the observed variations in recurrence time and burst fluence. Low metallicity models (Z ~ 0.001) reproduce the observed trends in recurrence time and fluence, but are ruled out by the variation in alpha. We discuss possible explanations, including extra heating between bursts, or that the fraction of the neutron star covered by the accreted fuel increases with Mdot.Comment: 9 pages, 6 figures, accepted by ApJ. Minor revisions following the referee's repor

    A Two-Zone Model for Type I X-ray Bursts on Accreting Neutron Stars

    Full text link
    We construct a two-zone model to describe H and He burning on the surface of an accreting neutron star and use it to study the triggering of type I X-ray bursts. Although highly simplified, the model reproduces all of the bursting regimes seen in the more complete global linear stability analysis of Narayan & Heyl (2003), including the regime of delayed mixed bursts. The results are also consistent with observations of type I X-ray bursts. At accretion rates Mdot < 0.1 Mdot_Edd, thermonuclear He burning via the well-known thin-shell thermal instability triggers bursts. As Mdot increases, however, the trigger mechanism evolves from the fast thermal instability to a slowly growing overstability involving both H and He burning. The competition between nuclear heating via the beta-limited CNO cycle and the triple-alpha process on the one hand, and radiative cooling via photon diffusion and emission on the other hand, drives oscillations with a period approximately equal to the H-burning timescale. If these oscillations grow, the gradually rising temperature at the base of the helium layer eventually provokes a thin-shell thermal instability and hence a delayed mixed burst. For Mdot > 0.25 Mdot_Edd, there is no instability or overstability, and there are no bursts. Nearly all other theoretical models predict that bursts should occur for all Mdot < Mdot_Edd, in conflict with both our results and observations. We suggest that this discrepancy arises from the assumed strength of the hot CNO cycle breakout reaction 15O(alpha,gamma)19Ne in these other models. That observations agree much better with the results of Narayan & Heyl and our two-zone model, both of which neglect breakout reactions, may imply that the true 15O(alpha,gamma)19Ne cross section is much smaller than assumed in previous investigations.Comment: 13 pages, 8 figures, accepted by Ap

    High-pressure study on the superconducting pyrochlore oxide Cd2Re2O7

    Full text link
    Superconducting and structural phase transitions in a pyrochlore oxide Cd2Re2O7 are studied under high pressure by x-ray diffraction and electrical resistivity measurements. A rich P-T phase diagram is obtained, which contains at least two phases with the ideal and slightly distorted pyrochlore structures. It is found that the transition between them is suppressed with increasing pressure and finally disappears at a critical pressure Pc = 3.5 GPa. Remarkable enhancements in the residual resistivity as well as the coefficient A of the AT 2 term in the resistivity are found around the critical pressure. Superconductivity is detected only for the phase with the structural distortion. It is suggested that the charge fluctuations of Re ions play a crucial role in determining the electronic properties of Cd2Re2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Convergence to a self-similar solution in general relativistic gravitational collapse

    Get PDF
    We study the spherical collapse of a perfect fluid with an equation of state P=kρP=k\rho by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart of the Larson-Penston self-similar Newtonian solution. The numerical simulations strongly suggest that, in the neighborhood of the center, generic collapse converges to this solution in an approach to a singularity and that self-similar solutions other than this solution, including a ``critical solution'' in the black hole critical behavior, are relevant only when the parameters which parametrize initial data are fine-tuned. This result is supported by a mode analysis on the pertinent self-similar solutions. Since a naked singularity forms in the general relativistic Larson-Penston solution for 0, this will be the most serious known counterexample against cosmic censorship. It also provides strong evidence for the self-similarity hypothesis in general relativistic gravitational collapse. The direct consequence is that critical phenomena will be observed in the collapse of isothermal gas in Newton gravity, and the critical exponent Îł\gamma will be given by γ≈0.11\gamma\approx 0.11, though the order parameter cannot be the black hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D, reference added, typos correcte
    • 

    corecore