155 research outputs found

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Osteo-Chondroprogenitor–Specific Deletion of the Selenocysteine tRNA Gene, Trsp, Leads to Chondronecrosis and Abnormal Skeletal Development: A Putative Model for Kashin-Beck Disease

    Get PDF
    Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA[Ser]Sec, required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome

    A schematic sampling protocol for contaminant monitoring in raptors

    Get PDF
    Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors

    The FaceBase Consortium: A comprehensive program to facilitate craniofacial research

    Get PDF
    The FaceBase Consortium consists of ten interlinked research and technology projects whose goal is to generate craniofacial research data and technology for use by the research community through a central data management and integrated bioinformatics hub. Funded by the National Institute of Dental and Craniofacial Research (NIDCR) and currently focused on studying the development of the middle region of the face, the Consortium will produce comprehensive datasets of global gene expression patterns, regulatory elements and sequencing; will generate anatomical and molecular atlases; will provide human normative facial data and other phenotypes; conduct follow up studies of a completed genome-wide association study; generate independent data on the genetics of craniofacial development, build repositories of animal models and of human samples and data for community access and analysis; and will develop software tools and animal models for analyzing and functionally testing and integrating these data. The FaceBase website (http://www.facebase.org) will serve as a web home for these efforts, providing interactive tools for exploring these datasets, together with discussion forums and other services to support and foster collaboration within the craniofacial research community

    Meta-analysis of thyroidectomy with ultrasonic dissector versus conventional clamp and tie

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted a systematic review to evaluate the role of Ultrasonic dissector (UAS) versus conventional clamp and tie in thyroidectomy.</p> <p>Materials and methods</p> <p>We searched for all published RCT in into electronic databases. To be included in the analysis, the studies had to compare thyroidectomy with UAS versus conventional vessel ligation and tight (conventional technique = CT). The following outcomes were used to compare the total thyroidectomy group with UAS versus CT group: operative duration, operative blood loss, overall drainage volume during the first 24 hours, transiet laryngeal nerve palsy, permanent laryngeal nerve palsy, transiet hypocalcaemia and permanent hypocalcaemia.</p> <p>Results</p> <p>There are currently 7 RCT on this issue to compare thyroidectomy with UAS versus CT. From the analysis of these studies it was possible to confront 608 cases: 303 undergoing to thyroidectomy with UAS versus 305 that were treated with CT. Actually, it was shown a relevant advantage of cost-effectiveness in patients treated with UAS; there is a statistically significant reduction of the operative duration (weighted mean difference [WMD], -18.74 minutes; 95% confidence interval [CI], (-26.97 to -10.52 minutes) (P = 0.00001), intraoperative blood loss (WMD, -60.10 mL; 95% CI, -117.04 to 3.16 mL) (P = 0.04) and overall drainage volume (WMD, -35.30 mL; 95% CI, -49.24 to 21.36 mL) (P = 0.00001) in the patients underwent thyroidectomy with UAS. Although the analysis showed that the patients who were treated with USA presented more favourable results in incidence of post-operative complications (transient laryngeal nerve palsy: P = 0.11; permanent laryngeal nerve palsy: not estimable; transient hypocalcaemia: P = 0.24; permanent hypocalcaemia: P = 0.45), these data didn't present statistical relevance.</p> <p>Conclusion</p> <p>This meta-analysis shown a relevant advantage only in terms of cost-effectiveness in patients treated with UAS; it is subsequent to statistically significant reduction of operation duration, intraoperative blood loss and of overall drainage volume during the first 24 hours. Although the analysis showed that the patients who were treated with UAS presented more favourable results in incidence of post-operative complications (transiet laryngeal nerve palsy; transiet hypocalcaemia and permanent hypocalcaemia), these data didn't present statistical relevance.</p

    Morphological Evolution of Spiders Predicted by Pendulum Mechanics

    Get PDF
    [Background] Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities.[Methodology/Principal Findings] We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders).[Conclusions/Significance] Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.This paper has been written under a Ramón y Cajal research contract from the Spanish Ministry of Science and Culture (MEC) to JML and a FPI scholarship (BES-2005-9234) to GC. This work has been funded by MEC grants CGL2004-03153 and CGL2007-60520 to JML and GC, as well as CGL2005-01771 to EMPeer reviewe

    Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements

    Get PDF
    Funding Information: We thank all the fieldworkers for their hard work collecting data. Funding for this study was provided by the Norwegian Ministry for Climate and the Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association along with 8 oil companies through the SEATRACK project (www. seapop. no/ en/ seatrack). Fieldwork in Norwegian colonies (incl. Svalbard and Jan Mayen) was supported by the SEAPOP program (www.seapop.no, grant no. 192141). The French Polar Institute (IPEV project 330 to O.C.) supported field operation for Kongsfjord kittiwakes. The work on the Isle of May was also supported by the Natural Environment Research Council (Award NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability). We thank Maria Bogdanova for field support and data processing. Finally, we thank 3 anonymous reviewers for their help improving the first version of the manuscript.Peer reviewedPublisher PD

    Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/− Mouse, a Model of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75–80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only ∼30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/− mice and in individuals with CdLS

    Developmental Stability: A Major Role for Cyclin G in Drosophila melanogaster

    Get PDF
    Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability. We observed that Drosophila melanogaster overexpressing Cyclin G (CycG) exhibit wing asymmetry clearly detectable by sight. Quantification of wing size and shape using geometric morphometrics reveals that this asymmetry is a genuine—but extreme—fluctuating asymmetry. Overexpression of CycG indeed leads to a 40-fold increase of wing fluctuating asymmetry, which is an unprecedented effect, for any organ and in any animal model, either in wild populations or mutants. This asymmetry effect is not restricted to wings, since femur length is affected as well. Inactivating CycG by RNAi also induces fluctuating asymmetry but to a lesser extent. Investigating the cellular bases of the phenotypic effects of CycG deregulation, we found that misregulation of cell size is predominant in asymmetric flies. In particular, the tight negative correlation between cell size and cell number observed in wild-type flies is impaired when CycG is upregulated. Our results highlight the role of CycG in the control of developmental stability in D. melanogaster. Furthermore, they show that wing developmental stability is normally ensured via compensatory processes between cell growth and cell proliferation. We discuss the possible role of CycG as a hub in a genetic network that controls developmental stability

    An assessment of orofacial clefts in Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clefts of the lip (CL), the palate (CP), or both (CLP) are the most common orofacial congenital malformations found among live births, accounting for 65% of all head and neck anomalies. The frequency and pattern of orofacial clefts in different parts of the world and among different human groups varies widely. Generally, populations of Asian or Native American origin have the highest prevalence, while Caucasian populations show intermediate prevalence and African populations the lowest. To date, little is known regarding the epidemiology and pattern of orofacial clefts in Tanzania.</p> <p>Methods</p> <p>A retrospective descriptive study was conducted at Bugando Medical Centre to identify all children with orofacial clefts that attended or were treated during a period of five years. Cleft lip and/or palate records were obtained from patient files in the Hospital's Departments of Surgery, Paediatrics and medical records. Age at presentation, sex, region of origin, type and laterality of the cleft were recorded. In addition, presence of associated congenital anomalies or syndromes was recorded.</p> <p>Results</p> <p>A total of 240 orofacial cleft cases were seen during this period. Isolated cleft lip was the most common cleft type followed closely by cleft lip and palate (CLP). This is a departure from the pattern of clefting reported for Caucasian and Asian populations, where CLP or isolated cleft palate is the most common type. The distribution of clefts by side showed a statistically significant preponderance of the left side (43.7%) (χ<sup>2 </sup>= 92.4, p < 0.001), followed by the right (28.8%) and bilateral sides (18.3%). Patients with isolated cleft palate presented at very early age (mean age 1.00 years, SE 0.56). Associated congenital anomalies were observed in 2.8% of all patients with orofacial clefts, and included neural tube defects, Talipes and persistent ductus arteriosus.</p> <p>Conclusions</p> <p>Unilateral orofacial clefts were significantly more common than bilateral clefts; with the left side being the most common affected side. Most of the other findings did not show marked differences with orofacial cleft distributions in other African populations.</p
    corecore