106 research outputs found
Anthrax Toxin Uptake by Primary Immune Cells as Determined with a Lethal Factor-Ξ²-Lactamase Fusion Protein
BACKGROUND:To initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the establishment of anthrax infections. METHODOLOGY/PRINCIPAL FINDINGS:To measure the ability of anthrax toxin to target immune cells, studies were performed using a fusion of the anthrax toxin lethal factor (LF) N-terminal domain (LFn, aa 1-254) with beta-lactamase (LFnBLA). This protein reports on the ability of the anthrax toxin protective antigen (PA) to mediate LF delivery into cells. Primary immune cells prepared from mouse spleens were used in conjunction with flow cytometry to assess cleavage and resulting FRET disruption of a fluorescent beta-lactamase substrate, CCF2/AM. In spleen cell suspensions, the macrophages, dendritic cells, and B cells showed about 75% FRET disruption of CCF2/AM due to cleavage by the PA-delivered LFnBLA. LFnBLA delivery into CD4+ and CD8+ T cells was lower, with 40% FRET disruption. When the analyses were done on purified samples of individual cell types, similar results were obtained, with T cells again having lower LFnBLA delivery than macrophages, dendritic cells, and B cells. Relative expression levels of the toxin receptors CMG2 and TEM8 on these cells were determined by real-time PCR. Expression of CMG2 was about 1.5-fold higher in CD8+ cells than in CD4+ and B cells, and 2.5-fold higher than in macrophages. CONCLUSIONS/SIGNIFICANCE:Anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B cells displayed higher LFnBLA activity than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not correlated to the intracellular LFnBLA activity
Anticipatory and consummatory pleasure and displeasure in major depressive disorder: An experience sampling study
Pleasure and displeasure can be parsed into anticipatory and consummatory phases. However, research on pleasure and displeasure in major depressive disorder (MDD), a disorder characterized by anhedonia, has largely focused on deficits in the consummatory phase. Moreover, most studies in this area have been laboratory-based, raising the question of how component processes of pleasure and displeasure are experienced in the daily lives of depressed individuals. Using experience sampling, we compared anticipatory and consummatory pleasure and displeasure for daily activities reported by adults with MDD (n=41) and healthy controls (n=39). Participants carried electronic devices for one week and were randomly prompted eight times a day to answer questions about activities to which they most and least looked forward. Compared to healthy controls, MDD participants reported blunted levels of both anticipatory and consummatory pleasure and elevated levels of both anticipatory and consummatory displeasure for daily activities. Independent of MDD status, participants accurately predicted pleasure but overestimated displeasure. These results are the first to provide evidence that, across both anticipatory and consummatory phases, individuals with MDD experience blunted pleasure and elevated displeasure for daily activities. Our findings clarify the disturbances in pleasure and displeasure that characterize MDD and may inform treatment for this debilitating disorder
Comparison of Time-Domain OCT and Fundus Photographic Assessments of Retinal Thickening in Eyes with Diabetic Macular Edema
To explore the correlation between optical coherence tomography (OCT) and stereoscopic fundus photographs (FP) for the assessment of retinal thickening (RT) in diabetic macular edema (DME) within a clinical trial
Qualitative and Quantitative Detection of Chlamydophila pneumoniae DNA in Cerebrospinal Fluid from Multiple Sclerosis Patients and Controls
A standardized molecular test for the detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid (CSF) would assist the further assessment of the association of C. pneumoniae with multiple sclerosis (MS). We developed and validated a qualitative colorimetric microtiter plate-based PCR assay (PCR-EIA) and a real-time quantitative PCR assay (TaqMan) for detection of C. pneumoniae DNA in CSF specimens from MS patients and controls. Compared to a touchdown nested-PCR assay, the sensitivity, specificity, and concordance of the PCR-EIA assay were 88.5%, 93.2%, and 90.5%, respectively, on a total of 137 CSF specimens. PCR-EIA presented a significantly higher sensitivity in MS patients (pβ=β0.008) and a higher specificity in other neurological diseases (pβ=β0.018). Test reproducibility of the PCR-EIA assay was statistically related to the volumes of extract DNA included in the test (pβ=β0.033); a high volume, which was equivalent to 100 Β΅l of CSF per reaction, yielded a concordance of 96.8% between two medical technologists running the test at different times. The TaqMan quantitative PCR assay detected 26 of 63 (41.3%) of positive CSF specimens that tested positive by both PCR-EIA and nested-PCR qualitative assays. None of the CSF specimens that were negative by the two qualitative PCR methods were detected by the TaqMan quantitative PCR. The PCR-EIA assay detected a minimum of 25 copies/ml C. pneumoniae DNA in plasmid-spiked CSF, which was at least 10 times more sensitive than TaqMan. These data indicated that the PCR-EIA assay possessed a sensitivity that was equal to the nested-PCR procedures for the detection of C. pneumoniae DNA in CSF. The TaqMan system may not be sensitive enough for diagnostic purposes due to the low C. pneumoniae copies existing in the majority of CSF specimens from MS patients
A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes
Gene duplication is supposed to be the major source for genetic innovations. However, how a new duplicate gene acquires functions by integrating into a pathway and results in adaptively important phenotypes has remained largely unknown. Here, we investigated the biological roles and the underlying molecular mechanism of the young kep1 gene family in the Drosophila melanogaster species subgroup to understand the origin and evolution of new genes with new functions. Sequence and expression analysis demonstrates that one of the new duplicates, nsr (novel spermatogenesis regulator), exhibits positive selection signals and novel subcellular localization pattern. Targeted mutagenesis and whole-transcriptome sequencing analysis provide evidence that nsr is required for male reproduction associated with sperm individualization, coiling, and structural integrity of the sperm axoneme via regulation of several Y chromosome fertility genes post-transcriptionally. The absence of nsr-like expression pattern and the presence of the corresponding cis-regulatory elements of the parental gene kep1 in the pre-duplication species Drosophila yakuba indicate that kep1 might not be ancestrally required for male functions and that nsr possibly has experienced the neofunctionalization process, facilitated by changes of trans-regulatory repertories. These findings not only present a comprehensive picture about the evolution of a new duplicate gene but also show that recently originated duplicate genes can acquire multiple biological roles and establish novel functional pathways by regulating essential genes
Serum MicroRNA Expression Profile Distinguishes Enterovirus 71 and Coxsackievirus 16 Infections in Patients with Hand-Foot-and-Mouth Disease
Altered circulating microRNA (miRNA) profiles have been noted in patients with microbial infections. We compared host serum miRNA levels in patients with hand-foot-and-mouth disease (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) as well as in other microbial infections and in healthy individuals. Among 664 different miRNAs analyzed using a miRNA array, 102 were up-regulated and 26 were down-regulated in sera of patients with enteroviral infections. Expression levels of ten candidate miRNAs were further evaluated by quantitative real-time PCR assays. A receiver operating characteristic (ROC) curve analysis revealed that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) were able to discriminate patients with enterovirus infections from healthy controls with area under curve (AUC) values ranged from 0.828 to 0.934. The combined six miRNA using multiple logistic regression analysis provided not only a sensitivity of 97.1% and a specificity of 92.7% but also a unique profile that differentiated enterovirial infections from other microbial infections. Expression levels of five miRNAs (miR-148a, miR-143, miR-324-3p, miR-545, and miR-140-5p) were significantly increased in patients with CVA16 versus those with EV71 (p<0.05). Combination of miR-545, miR-324-3p, and miR-143 possessed a moderate ability to discrimination between CVA16 and EV71 with an AUC value of 0.761. These data indicate that sera from patients with different subtypes of enteroviral infection express unique miRNA profiles. Serum miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping enteroviral HFMD infections
Gpr124 is essential for blood-brain barrier integrity in central nervous system disease
Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-Ξ²-catenin signaling. Constitutive activation of Wnt-Ξ²-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption
Image reconstruction techniques; (170.3880) Medical and biological imaging
Abstract: Diffuse optical tomography (DOT) reconstructs the images of internal optical parameter distribution using noninvasive boundary measurements. The image reconstruction procedure is known to be an ill-posed problem. In order to solve such a problem, a regularization technique is needed to constrain the solution space. In this study, a projection-error-based adaptive regularization (PAR) technique is proposed to improve the reconstructed image quality. Simulations are performed using a diffusion approximation model and the simulated results demonstrate that the PAR technique can improve reconstruction precision of object more effectively. The method is demonstrated to have low sensitivity to noise at various noise levels. Moreover, with the PAR method, the detectability of an object located both at the center and near the peripheral regions has been increased largely
- β¦