118 research outputs found

    How robust are future projections of forest landscape dynamics? Insights from a systematic comparison of four forest landscape models

    Get PDF
    Projections of landscape dynamics are uncertain, partly due to uncertainties in model formulations. However, quantitative comparative analyses of forest landscape models are lacking. We conducted a systematic comparison of all forest landscape models currently applied in temperate European forests (LandClim, TreeMig, LANDIS-II, iLand). We examined the uncertainty of model projections under several future climate, disturbance, and dispersal scenarios, and quantified uncertainties by variance partitioning. While projections under past climate conditions were in good agreement with observations, uncertainty under future climate conditions was high, with between-model biomass differences of up to 200 t ha−1. Disturbances strongly influenced landscape dynamics and contributed substantially to uncertainty in model projections (~25–40% of observed variance). Overall, model differences were the main source of uncertainty, explaining at least 50% of observed variance. We advocate a more rigorous and systematic model evaluation and calibration, and a broader use of ensemble projections to quantify uncertainties in future landscape dynamics

    Wellsprings of a 'World War': An early English attempt to conquer Canada during King William's war, 1688-97

    Get PDF
    This is the author's PDF version of an article published in Journal of Imperial and Commonwealth History© 2006. The definitive version is available at www.tandf.co.uk/journals/FICHThis article discusses the military history of the early years of King William's War, 1688-97, including an early attempt to conquer French Canada in 1690 by Sir William Phips. The article places this within differeing interpretations of the military historiography of early modern colonial America.This article was submitted to the RAE2008 for the University of Chester - History

    Perceptual judgment and saccadic behavior in a spatial distortion with briefly presented stimuli.

    Get PDF
    When observers are asked to localize the peripheral position of a small probe with respect to the mid-position of a spatially extended comparison stimulus, they tend to judge the probe as being more peripheral than the mid-position of the comparison stimulus. This relative mislocalization seems to emerge from differences in absolute localization, that is the comparison stimulus is localized more towards the fovea than the probe. The present study compared saccadic behaviour and relative localization judgements in three experiments and determined the quantitative relationship between both measures. The results showed corresponding effects in localization errors and saccadic behaviour. Moreover, it was possible to estimate the amount of the relative mislocalization by means of the saccadic amplitude

    Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study

    Get PDF
    Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits

    The Brentano illusion influences goal-directed movements of the left and right hand to the same extent

    Get PDF
    Recently, Gonzalez et al. (J Neurophys 95:3496-3501, 2006) reported that movements with the left hand are more susceptible to visual size illusions than are those with the right hand. We hypothesized that this might be because proprioceptive information about the position of the left hand is less precise. If so, the difference between the hands should become clearer when vision of the hand is removed so that subjects can only rely on proprioception to locate their hand. We tested whether this was so by letting right-handed subjects make open-loop pointing movements within an illusory context with and without vision of their hand. On average, the illusion influenced the left and the right hand to the same extent, irrespective of the visibility of the hand. There were some systematic differences between the hands within certain regions of space, but these were not consistent across subjects. We conclude that there is no fundamental difference between the hands in susceptibility to the Brentano illusion
    corecore