3,684 research outputs found
Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft
The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline
Database Search Strategies for Proteomic Data Sets Generated by Electron Capture Dissociation Mass Spectrometry
Large data sets of electron capture dissociation (ECD) mass spectra from proteomic experiments are rich in information; however, extracting that information in an optimal manner is not straightforward. Protein database search engines currently available are designed for low resolution CID data, from which Fourier transform ion cyclotron resonance (FT-ICR) ECD data differs significantly. ECD mass spectra contain both z-prime and z-dot fragment ions (and c-prime and c-dot); ECD mass spectra contain abundant peaks derived from neutral losses from charge-reduced precursor ions; FT-ICR ECD spectra are acquired with a larger precursor m/z isolation window than their low-resolution CID counterparts. Here, we consider three distinct stages of postacquisition analysis: (1) processing of ECD mass spectra prior to the database search; (2) the database search step itself and (3) postsearch processing of results. We demonstrate that each of these steps has an effect on the number of peptides identified, with the postsearch processing of results having the largest effect. We compare two commonly used search engines: Mascot and OMSSA. Using an ECD data set of modest size (3341 mass spectra) from a complex sample (mouse whole cell lysate), we demonstrate that search results can be improved from 630 identifications (19% identification success rate) to 1643 identifications (49% identification success rate). We focus in particular on improving identification rates for doubly charged precursors, which are typically low for ECD fragmentation. We compare our presearch processing algorithm with a similar algorithm recently developed for electron transfer dissociation (ETD) data
Scanning a photonic crystal slab nanocavity by condensation of xenon
Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening
Phase formation and thermal stability of ultrathin nickel-silicides on Si(100)
The solid-state reaction and agglomeration of thin nickel-silicide films was investigated from sputter deposited nickel films (1-10 nm) on silicon-on-insulator (100) substrates. For typical anneals at a ramp rate of 3 degrees C/s, 5-10 nm Ni films react with silicon and form NiSi, which agglomerates at 550-650 degrees C, whereas films with a thickness of 3.7 nm of less were found to form an epitaxylike nickel-silicide layer. The resulting films show an increased thermal stability with a low electrical resistivity up to 800 degrees C
Thermal performance of two heat exchangers for thermoelectric generators
Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and
thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed
by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics.
In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state,
3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an
actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG
model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG.
Natural convection effect on the outside surfaces of the computational model is considered. Computational
models and methods used are validated under transient thermal and electrical experimental conditions of a TEG.
It is turned out that the two heat exchangers designed have a better thermal performance compared with an
existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly
half temperature rise compared with the tube heat exchanger
Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?
It is known that there must be some weak form of transport (called cool
bottom processing, or CBP) acting in low mass RGB and AGB stars, adding nuclei,
newly produced near the hydrogen-burning shell, to the convective envelope. We
assume that this extra-mixing originates in a stellar dynamo operated by the
differential rotation below the envelope, maintaining toroidal magnetic fields
near the hydrogen-burning shell. We use a phenomenological approach to the
buoyancy of magnetic flux tubes, assuming that they induce matter circulation
as needed by CBP models. This establishes requirements on the fields necessary
to transport material from zones where some nuclear burning takes place,
through the radiative layer, and into the convective envelope. Magnetic field
strengths are determined by the transport rates needed by CBP for the model
stellar structure of a star of initially 1.5 solar mass, in both the AGB and
RGB phases. The field required for the AGB star in the processing zone is B_0 ~
5x10^6 G; at the base of the convective envelope this yields an intensity B_E <
10^4 G (approximately). For the RGB case, B_0 ~ 5x10^4 to 4x10^5 G, and the
corresponding B_E are ~ 450 to 3500 G. These results are consistent with
existing observations on AGB stars. They also hint at the basis for high field
sources in some planetary nebulae and the very large fields found in some white
dwarfs. It is concluded that transport by magnetic buoyancy should be
considered as a possible mechanism for extra mixing through the radiative zone,
as is required by both stellar observations and the extensive isotopic data on
circumstellar condensates found in meteorites.Comment: 26 pages, 4 figures, accepted by Astrophysical Journa
Recommended from our members
Halving Food Loss and Waste in the EU by 2030: the major steps needed to accelerate progress
Unsustainable production and consumption of food constitutes one of the biggest environmental threats to our planet. Eliminating food loss and waste to the largest extent possible – at all stages from producer to final consumer – stands out as an urgent and indispensable step towards more sustainable food systems. The EU’s recent adoption of the Circular Economy Package, including the revision of its Waste Framework Directive in 2018 and a new Delegated Act on the measurement of food waste in 2019, opens a limited time period where Member States will have to integrate these policies into their national law. In 2020, the first EU-wide national measurement of food waste will be undertaken. This will be reported back to the EU mid2022 and will provide comparative baseline measures for all Member States. The publication of this baseline data in 2023 will provide the opportunity to consider the feasibility of establishing Union-wide food waste reduction targets to be met by 2025 and 2030. For this reason, 2020–2023 will provide crucial moments of opportunity for EU Member States’ food waste policy and EU-wide food waste reduction. Indeed, changes in the regulatory framework were necessary but need to be accompanied by further action to effectively accelerate food waste reductions. Through a rapid review of food waste literature and interviews with Member State representatives, this report identifies and provides case studies of the food waste reduction actions that have the largest evidence bases and largest potential for accelerating progress towards SDG target 12.3 (halving food waste by 2030 and reducing food losses), but which have been insufficiently applied in the EU until now: Food waste measurement; Valorisation; and Voluntary Agreements. Some of these actions are already partly developed in the EU (valorisation), while others have only recently been piloted across several Member States (voluntary agreements) or still need to be deployed coherently (food waste measurement). This report also highlights other interventions that show less evidence of their potential to date, but which are expected to hold high potential for effective food waste reduction: Changes to the Common Agricultural Policy; Stronger Regulation; and National Food Waste Strategies. Due to the interconnected nature of food waste, and of the EU and Member State policies, all food waste reduction areas proposed are interlinked and related. Together they offer a suite of actions that can be deployed over a range of time scales, from 12 months through to 5 years; and at a range of sizes, from individual companies or specific industry sectors, through to government-led deployment on a national scale. These actions will all benefit from close collaboration between the stakeholders, who can jointly deliver the urgently needed acceleration in food waste reduction
Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2
We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel
- …