2,043 research outputs found
SN1991bg-like supernovae are a compelling source of most Galactic antimatter
The Milky Way Galaxy glows with the soft gamma ray emission resulting from
the annihilation of electron-positron pairs every
second. The origin of this vast quantity of antimatter and the peculiar
morphology of the 511keV gamma ray line resulting from this annihilation have
been the subject of debate for almost half a century. Most obvious positron
sources are associated with star forming regions and cannot explain the rate of
positron annihilation in the Galactic bulge, which last saw star formation some
ago, or else violate stringent constraints on the positron
injection energy. Radioactive decay of elements formed in core collapse
supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply
positrons matching the injection energy constraints but the distribution of
such potential sources does not replicate the required morphology. We show that
a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae
(SNe 91bg) - can supply the number and distribution of positrons we see
annihilating in the Galaxy through the decay of Ti synthesised in these
events. Such Ti production simultaneously addresses the observed
abundance of Ca, the Ti decay product, in solar system material.Comment: Accepted for publication in Proceedings of IAU Symposium 322: The
Multimessenger Astrophysics of the Galactic Center 4 page
Solidification of liquid metal drops during impact
Hot liquid metal drops impacting onto a cold substrate solidify during their
subsequent spreading. Here we experimentally study the influence of
solidification on the outcome of an impact event. Liquid tin drops are impacted
onto sapphire substrates of varying temperature. The impact is visualised both
from the side and from below, which provides a unique view on the
solidification process. During spreading an intriguing pattern of radial
ligaments rapidly solidifies from the centre of the drop. This pattern
determines the late-time morphology of the splat. A quantitative analysis of
the drop spreading and ligament formation is supported by scaling arguments.
Finally, a phase diagram for drop bouncing, deposition and splashing as a
function of substrate temperature and impact velocity is provided
Linear-Matrix-Inequality-Based Solution to Wahba’s Problem
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140644/1/1.g000132.pd
Temperature dependent transport characteristics of graphene/n-Si diodes
Realizing an optimal Schottky interface of graphene on Si is challenging, as
the electrical transport strongly depends on the graphene quality and the
fabrication processes. Such interfaces are of increasing research interest for
integration in diverse electronic devices as they are thermally and chemically
stable in all environments, unlike standard metal/semiconductor interfaces. We
fabricate such interfaces with n-type Si at ambient conditions and find their
electrical characteristics to be highly rectifying, with minimal reverse
leakage current (10 A) and rectification of more than . We
extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83
eV for the CVD graphene devices at room temperature. The temperature dependent
electrical characteristics suggest the influence of inhomogeneities at the
graphene/n-Si interface. A quantitative analysis of the inhomogeneity in
Schottky barrier heights is presented using the potential fluctuation model
proposed by Werner and G\"{u}ttler.Comment: 5 pages, 5 figure
SN1991bg-like supernovae are associated with old stellar populations
SN1991bg-like supernovae are a distinct subclass of thermonuclear supernovae
(SNe Ia). Their spectral and photometric peculiarities indicate their
progenitors and explosion mechanism differ from `normal' SNe Ia. One method of
determining information about supernova progenitors we cannot directly observe
is to observe the stellar population adjacent to the apparent supernova
explosion site to infer the distribution of stellar population ages and
metallicities. We obtain integral field observations and analyse the spectra
extracted from regions of projected radius about the
apparent SN explosion site for 11 91bg-like SNe in both early- and late-type
galaxies. We utilize full-spectrum spectral fitting to determine the ages and
metallicities of the stellar population within the aperture. We find that the
majority of the stellar populations that hosted 91bg-like supernovae have
little recent star formation. The ages of the stellar populations suggest that
that 91bg-like SN progenitors explode after delay times of ,
much longer than the typical delay time of normal SNe Ia, which peaks at .Comment: 12 pages, 3 figures, 3 tables, submitted to Publications of the
Astronomical Society of Australi
- …