1,052 research outputs found
Quantum and random walks as universal generators of probability distributions
Quantum walks and random walks bear similarities and divergences. One of the
most remarkable disparities affects the probability of finding the particle at
a given location: typically, almost a flat function in the first case and a
bell-shaped one in the second case. Here I show how one can impose any desired
stochastic behavior (compatible with the continuity equation for the
probability function) on both systems by the appropriate choice of time- and
site-dependent coins. This implies, in particular, that one can devise quantum
walks that show diffusive spreading without loosing coherence, as well as
random walks that exhibit the characteristic fast propagation of a quantum
particle driven by a Hadamard coin.Comment: 8 pages, 2 figures; revised and enlarged versio
Deformation, CPO, and Elastic Anisotropy in LowâGrade Metamorphic Serpentinites, Atlantis Massif Oceanic Core Complex
Crystallographic preferred orientation (CPO) and the associated seismic anisotropy of serpentinites are important factors for the understanding of tectonic settings involving hydrated EarthŽs mantle, for example, at slow-spreading mid-ocean ridges. CPO of lizardite and magnetite in low-grade metamorphic serpentinites from the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N) were determined using synchrotron high energy X-ray diffraction in combination with Rietveld texture analysis. Serpentinite mesh structures show weak CPO while deformed samples show a single (0001) maximum perpendicular to the foliation. Seismic anisotropies calculated from CPO show up to >11% anisotropy for compressional waves (Vp) and shear wave splitting up to 0.38 km/s in the deformed samples. This indicates that deformation in shear zones controls elastic anisotropy and highlights its importance in defining the seismic signature of hydrated upper mantle
Permissive Controller Synthesis for Probabilistic Systems
We propose novel controller synthesis techniques for probabilistic systems
modelled using stochastic two-player games: one player acts as a controller,
the second represents its environment, and probability is used to capture
uncertainty arising due to, for example, unreliable sensors or faulty system
components. Our aim is to generate robust controllers that are resilient to
unexpected system changes at runtime, and flexible enough to be adapted if
additional constraints need to be imposed. We develop a permissive controller
synthesis framework, which generates multi-strategies for the controller,
offering a choice of control actions to take at each time step. We formalise
the notion of permissivity using penalties, which are incurred each time a
possible control action is disallowed by a multi-strategy. Permissive
controller synthesis aims to generate a multi-strategy that minimises these
penalties, whilst guaranteeing the satisfaction of a specified system property.
We establish several key results about the optimality of multi-strategies and
the complexity of synthesising them. Then, we develop methods to perform
permissive controller synthesis using mixed integer linear programming and
illustrate their effectiveness on a selection of case studies
Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)
The B\"uchi non-emptiness problem for timed automata refers to deciding if a
given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting
condition. The standard solution to this problem involves adding an auxiliary
clock to take care of the non-Zenoness. In this paper, it is shown that this
simple transformation may sometimes result in an exponential blowup. A
construction avoiding this blowup is proposed. It is also shown that in many
cases, non-Zenoness can be ascertained without extra construction. An
on-the-fly algorithm for the non-emptiness problem, using non-Zenoness
construction only when required, is proposed. Experiments carried out with a
prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV
2010; Formal Methods in System Design, 201
32. DATA REPORT: HYDRAULIC CONDUCTIVITY MEASUREMENTS ON DISCRETE SAMPLES COLLECTED FROM LEG 141, SITE 863
ABSTRACT Measurements made on samples collected across a prominent zone of cementation occurring at depths below ~400 mbsf at Site 863 suggest that this zone is associated with a 100 fold reduction in hydraulic conductivity. The cements are related to significant smectite and zeolite deposition and cause sharp changes in sonic velocity, porosity, and thermal conductivity. The current pore fluid chemistry profile suggests cementation is continuing in-situ at the present time
Recommended from our members
Neglect patients exhibit egocentric or allocentric neglect for the same stimulus contingent upon task demands
Hemispatial Neglect (HN) is a failure to allocate attention to a region of space opposite to where damage has occurred in the brain, usually the left side of space. It is widely documented that there are two types of neglect: egocentric neglect (neglect of information falling on the individual?s left side) and allocentric neglect (neglect of the left side of each object, regardless of the position of that object in relation to the individual). We set out to address whether neglect presentation could be modified from egocentric to allocentric through manipulating the task demands whilst keeping the physical stimulus constant by measuring the eye movement behaviour of a single group of neglect patients engaged in two different tasks (copying and tracing). Eye movements and behavioural data demonstrated that patients exhibited symptoms consistent with egocentric neglect in one task (tracing), and allocentric neglect in another task (copying), suggesting that task requirements may influence the nature of the neglect symptoms produced by the same individual. Different task demands may be able to explain differential neglect symptoms in some individuals
- âŠ