2,035 research outputs found
The plasmonic eigenvalue problem
A plasmon of a bounded domain is a non-trivial
bounded harmonic function on which is
continuous at and whose exterior and interior normal
derivatives at have a constant ratio. We call this ratio a
plasmonic eigenvalue of . Plasmons arise in the description of
electromagnetic waves hitting a metallic particle . We investigate
these eigenvalues and prove that they form a sequence of numbers converging to
one. Also, we prove regularity of plasmons, derive a variational
characterization, and prove a second order perturbation formula. The problem
can be reformulated in terms of Dirichlet-Neumann operators, and as a side
result we derive a formula for the shape derivative of these operators.Comment: 22 pages; replacement 8-March-14: minor corrections; to appear in
Review in Mathematical Physic
Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts
Published report discusses feasibility of ultrasonic techniques; neutron techniques; X-radiography; optical devices; gamma ray devices; and conventional displacement sensors. Use of signal transmitters in place of slip rings indicated possible improvement and will be subject of futher study
Noncontacting device to indicate deflection of turbopump internal rotating parts
Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included
Dissociative recombination measurements of HCl+ using an ion storage ring
We have measured dissociative recombination of HCl+ with electrons using a
merged beams configuration at the heavy-ion storage ring TSR located at the Max
Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the
measured absolute merged beams recombination rate coefficient for collision
energies from 0 to 4.5 eV. We have also developed a new method for deriving the
cross section from the measurements. Our approach does not suffer from
approximations made by previously used methods. The cross section was
transformed to a plasma rate coefficient for the electron temperature range
from T=10 to 5000 K. We show that the previously used HCl+ DR data
underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and
overestimate it by a factor of 3.0 at T=300 K. We also find that the new data
may partly explain existing discrepancies between observed abundances of
chlorine-bearing molecules and their astrochemical models.Comment: Accepted for publication in ApJ (July 7, 2013
Ion-lithium collision dynamics studied with an in-ring MOTReMi
We present a novel experimental tool allowing for kinematically complete
studies of break-up processes of laser-cooled atoms. This apparatus, the
'MOTReMi', is a combination of a magneto-optical trap (MOT) and a Reaction
Microscope (ReMi). Operated in an ion-storage ring, the new setup enables to
study the dynamics in swift ion-atom collisions on an unprecedented level of
precision and detail. In first experiments on collisions with 1.5 MeV/amu
O-Li the pure ionization of the valence electron as well as
ionization-excitation of the lithium target has been investigated
Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields
Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p
core excitations has been measured at the Heidelberg heavy ion storage ring
TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but
also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n
(2p_j nl)-Rydberg resonances. This result confirms our previous finding for
isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that
experimentally established the sensitivity of DR to ExB fields. In the present
investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+
allowed us to study separately the influence of external fields via the two
series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s ->
2p_{3/2} excitations of the Li-like core, extracting initial slopes and
saturation fields of the enhancement. We find that for Ey > 80 V/cm the field
induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than
for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see
also http://www.strz.uni-giessen.de/~k
Spectroscopy and dissociative recombination of the lowest rotational states of H3+
The dissociative recombination of the lowest rotational states of H3+ has
been investigated at the storage ring TSR using a cryogenic 22-pole
radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15
K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the
ortho and para proton-spin symmetry, respectively. The rate coefficients and
dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2
were measured and compared to the rate and dynamics of a hot H3+ beam from a
Penning source. The production of cold H3+ rotational populations was
separately studied by rovibrational laser spectroscopy using chemical probing
with argon around 55 K. First results indicate a ~20% relative increase of the
para contribution when using para-H2 as parent gas. The H3+ rate coefficient
observed for the para-H2 source gas, however, is quite similar to the H3+ rate
for the normal-H2 source gas. The recombination dynamics confirm that for both
source gases, only small populations of rotationally excited levels are
present. The distribution of 3-body fragmentation geometries displays a broad
part of various triangular shapes with an enhancement of ~12% for events with
symmetric near-linear configurations. No large dependences on internal state or
collision energy are found.Comment: 10 pages, 9 figures, to be published in Journal of Physics:
Conference Proceeding
Dielectronic Recombination in Photoionized Gas. II. Laboratory Measurements for Fe XVIII and Fe XIX
In photoionized gases with cosmic abundances, dielectronic recombination (DR)
proceeds primarily via nlj --> nl'j' core excitations (Dn=0 DR). We have
measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe
XIX to Fe XVIII Dn=0 DR. Using our measurements, we have calculated the Fe
XVIII and Fe XIX Dn=0 DR DR rate coefficients. Significant discrepancies exist
between our inferred rates and those of published calculations. These
calculations overestimate the DR rates by factors of ~2 or underestimate it by
factors of ~2 to orders of magnitude, but none are in good agreement with our
results. Almost all published DR rates for modeling cosmic plasmas are computed
using the same theoretical techniques as the above-mentioned calculations.
Hence, our measurements call into question all theoretical Dn=0 DR rates used
for ionization balance calculations of cosmic plasmas. At temperatures where
the Fe XVIII and Fe XIX fractional abundances are predicted to peak in
photoionized gases of cosmic abundances, the theoretical rates underestimate
the Fe XVIII DR rate by a factor of ~2 and overestimate the Fe XIX DR rate by a
factor of ~1.6. We have carried out new multiconfiguration Dirac-Fock and
multiconfiguration Breit-Pauli calculations which agree with our measured
resonance strengths and rate coefficients to within typically better than
<~30%. We provide a fit to our inferred rate coefficients for use in plasma
modeling. Using our DR measurements, we infer a factor of ~2 error in the Fe XX
through Fe XXIV Dn=0 DR rates. We investigate the effects of this estimated
error for the well-known thermal instability of photoionized gas. We find that
errors in these rates cannot remove the instability, but they do dramatically
affect the range in parameter space over which it forms.Comment: To appear in ApJS, 44 pages with 13 figures, AASTeX with postsript
figure
Recommended from our members
New Collisional Ionization Equilibrium Calculations for Optically Thin Plasmas
Reliably interpreting spectra from electron-ionized laboratory and cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Mg-like ions of all elements from He to Zn as well as for Al- like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the most recently recommended electron impact ionization data, we present improved collisional ionization equilibrium (CIE) calculations. Here, as an example, we present our calculated fractional ionic abundances for iron using these data and compare them with those from the previously recommended CIE calculations
- âŠ