3,904 research outputs found

    Bound states of PT-symmetric separable potentials

    Full text link
    All of the PT-symmetric potentials that have been studied so far have been local. In this paper nonlocal PT-symmetric separable potentials of the form V(x,y)=iϵ[U(x)U(y)−U(−x)U(−y)]V(x,y)=i\epsilon[U(x)U(y)-U(-x)U(-y)], where U(x)U(x) is real, are examined. Two specific models are examined. In each case it is shown that there is a parametric region of the coupling strength ϵ\epsilon for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of ϵ\epsilon that bound this region are calculated.Comment: 10 pages, 3 figure

    Multi-Way Relay Networks: Orthogonal Uplink, Source-Channel Separation and Code Design

    Full text link
    We consider a multi-way relay network with an orthogonal uplink and correlated sources, and we characterise reliable communication (in the usual Shannon sense) with a single-letter expression. The characterisation is obtained using a joint source-channel random-coding argument, which is based on a combination of Wyner et al.'s "Cascaded Slepian-Wolf Source Coding" and Tuncel's "Slepian-Wolf Coding over Broadcast Channels". We prove a separation theorem for the special case of two nodes; that is, we show that a modular code architecture with separate source and channel coding functions is (asymptotically) optimal. Finally, we propose a practical coding scheme based on low-density parity-check codes, and we analyse its performance using multi-edge density evolution.Comment: Authors' final version (accepted and to appear in IEEE Transactions on Communications

    The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources

    Full text link
    This paper studies the three-user finite-field multi-way relay channel, where the users exchange messages via a relay. The messages are arbitrarily correlated, and the finite-field channel is linear and is subject to additive noise of arbitrary distribution. The problem is to determine the minimum achievable source-channel rate, defined as channel uses per source symbol needed for reliable communication. We combine Slepian-Wolf source coding and functional-decode-forward channel coding to obtain the solution for two classes of source and channel combinations. Furthermore, for correlated sources that have their common information equal their mutual information, we propose a new coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions on Communications

    Mutually Unbiased Bases and Trinary Operator Sets for N Qutrits

    Get PDF
    A complete orthonormal basis of N-qutrit unitary operators drawn from the Pauli Group consists of the identity and 9^N-1 traceless operators. The traceless ones partition into 3^N+1 maximally commuting subsets (MCS's) of 3^N-1 operators each, whose joint eigenbases are mutually unbiased. We prove that Pauli factor groups of order 3^N are isomorphic to all MCS's, and show how this result applies in specific cases. For two qutrits, the 80 traceless operators partition into 10 MCS's. We prove that 4 of the corresponding basis sets must be separable, while 6 must be totally entangled (and Bell-like). For three qutrits, 728 operators partition into 28 MCS's with less rigid structure allowing for the coexistence of separable, partially-entangled, and totally entangled (GHZ-like) bases. However, a minimum of 16 GHZ-like bases must occur. Every basis state is described by an N-digit trinary number consisting of the eigenvalues of N observables constructed from the corresponding MCS.Comment: LaTeX, 10 pages, 2 references adde

    The Finite Field Multi-Way Relay Channel with Correlated Sources: The Three-User Case

    Full text link
    The three-user finite field multi-way relay channel with correlated sources is considered. The three users generate possibly correlated messages, and each user is to transmit its message to the two other users reliably in the Shannon sense. As there is no direct link among the users, communication is carried out via a relay, and the link from the users to the relay and those from the relay to the users are finite field adder channels with additive noise of arbitrary distribution. The problem is to determine the set of all possible achievable rates, defined as channel uses per source symbol for reliable communication. For two classes of source/channel combinations, the solution is obtained using Slepian-Wolf source coding combined with functional-decode-forward channel coding.Comment: to be presented at ISIT 201

    Interference in Bohmian Mechanics with Complex Action

    Full text link
    In recent years, intensive effort has gone into developing numerical tools for exact quantum mechanical calculations that are based on Bohmian mechanics. As part of this effort we have recently developed as alternative formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex [JCP {125}, 231103 (2006)]. In the alternative formulation there is a significant reduction in the magnitude of the quantum force as compared with the conventional Bohmian formulation, at the price of propagating complex trajectories. In this paper we show that Bohmian mechanics with complex action is able to overcome the main computational limitation of conventional Bohmian methods -- the propagation of wavefunctions once nodes set in. In the vicinity of nodes, the quantum force in conventional Bohmian formulations exhibits rapid oscillations that pose severe difficulties for existing numerical schemes. We show that within complex Bohmian mechanics, multiple complex initial conditions can lead to the same real final position, allowing for the description of nodes as a sum of the contribution from two or more crossing trajectories. The idea is illustrated on the reflection amplitude from a one-dimensional Eckart barrier. We believe that trajectory crossing, although in contradiction to the conventional Bohmian trajectory interpretation, provides an important new tool for dealing with the nodal problem in Bohmian methods
    • …
    corecore