128 research outputs found

    Velocity correlations in granular materials

    Full text link
    A system of inelastic hard disks in a thin pipe capped by hot walls is studied with the aim of investigating velocity correlations between particles. Two effects lead to such correlations: inelastic collisions help to build localized correlations, while momentum conservation and diffusion produce long ranged correlations. In the quasi-elastic limit, the velocity correlation is weak, but it is still important since it is of the same order as the deviation from uniformity. For system with stronger inelasticity, the pipe contains a clump of particles in highly correlated motion. A theory with empirical parameters is developed. This theory is composed of equations similar to the usual hydrodynamic laws of conservation of particles, energy, and momentum. Numerical results show that the theory describes the dynamics satisfactorily in the quasi-elastic limit, however only qualitatively for stronger inelasticity.Comment: 12 pages (REVTeX), 15 figures (Postscript). submitted to Phys. Rev.

    Scaling and universality of critical fluctuations in granular gases

    Get PDF
    The global energy fluctuations of a low density gas granular gas in the homogeneous cooling state near its clustering instability are studied by means of molecular dynamics simulations. The relative dispersion of the fluctuations is shown to exhibit a power-law divergent behavior. Moreover, the probability distribution of the fluctuations presents data collapse as the system approaches the instability, for different values of the inelasticity. The function describing the collapse turns out to be the same as the one found in several molecular equilibrium and non-equilibrium systems, except for the change in the sign of the fluctuations

    The energy flux into a fluidized granular medium at a vibrating wall

    Full text link
    We study the power input of a vibrating wall into a fluidized granular medium, using event driven simulations of a model granular system. The system consists of inelastic hard disks contained between a stationary and a vibrating elastic wall, in the absence of gravity. Two scaling relations for the power input are found, both involving the pressure. The transition between the two occurs when waves generated at the moving wall can propagate across the system. Choosing an appropriate waveform for the vibrating wall removes one of these scalings and renders the second very simple.Comment: 5 pages, revtex, 7 postscript figure

    Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis

    Full text link
    The inelastic Boltzmann equation for a granular gas is applied to spatially inhomogeneous states close to the uniform shear flow. A normal solution is obtained via a Chapman-Enskog-like expansion around a local shear flow distribution. The heat and momentum fluxes are determined to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding transport coefficients are determined from a set of coupled linear integral equations which are approximately solved by using a kinetic model of the Boltzmann equation. The main new ingredient in this expansion is that the reference state f(0)f^{(0)} (zeroth-order approximation) retains all the hydrodynamic orders in the shear rate. In addition, since the collisional cooling cannot be compensated locally for viscous heating, the distribution f(0)f^{(0)} depends on time through its dependence on temperature. This means that in general, for a given degree of inelasticity, the complete nonlinear dependence of the transport coefficients on the shear rate requires the analysis of the {\em unsteady} hydrodynamic behavior. To simplify the analysis, the steady state conditions have been considered here in order to perform a linear stability analysis of the hydrodynamic equations with respect to the uniform shear flow state. Conditions for instabilities at long wavelengths are identified and discussed.Comment: 7 figures; previous stability analysis modifie

    Energy flows in vibrated granular media

    Full text link
    We study vibrated granular media, investigating each of the three components of the energy flow: particle-particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by interparticle collisions is well estimated by existing theories when the granular material is dilute, and these theories are extended to include rotational kinetic energy. When the granular material is dense, the observed particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the rate of energy input is the weight of the granular material times an average vibration velocity times a function of the ratio of particle to vibration velocity. `Particle-wall' dissipation has been neglected in all theories up to now, but can play an important role when the granular material is dilute. The ratio between gravitational potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments have shown that E ~ V^delta, with delta=2 for dilute granular material, and delta ~ 1.5 for dense granular material. We relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR

    Energy non-equipartition in systems of inelastic, rough spheres

    Get PDF
    We calculate and verify with simulations the ratio between the average translational and rotational energies of systems with rough, inelastic particles, either forced or freely cooling. The ratio shows non-equipartition of energy. In stationary flows, this ratio depends mainly on the particle roughness, but in nonstationary flows, such as freely cooling granular media, it also depends strongly on the normal dissipation. The approach presented here unifies and simplifies different results obtained by more elaborate kinetic theories. We observe that the boundary induced energy flux plays an important role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev

    Hydrodynamic Modes for Granular Gases

    Full text link
    The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes, are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state

    Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases

    Full text link
    It is shown that the hydrodynamic modes of a dilute granular gas of inelastic hard spheres can be identified, and calculated in the long wavelength limit. Assuming they dominate at long times, formal expressions for the Navier-Stokes transport coefficients are derived. They can be expressed in a form that generalizes the Green-Kubo relations for molecular systems, and it is shown that they can also be evaluated by means of NN-particle simulation methods. The form of the hydrodynamic modes to zeroth order in the gradients is used to detect the presence of inherent velocity correlations in the homogeneous cooling state, even in the low density limit. They manifest themselves in the fluctuations of the total energy of the system. The theoretical predictions are shown to be in agreement with molecular dynamics simulations. Relevant related questions deserving further attention are pointed out

    Gaussian Kinetic Model for Granular Gases

    Full text link
    A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of over population at large velocities, are reproduced semi-quantitatively by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell Model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.Comment: to be submitted to Phys. Rev.

    Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy

    Full text link
    We study the exchange of kinetic energy between translational and rotational degrees of freedom for inelastic collisions of rough spheres. Even if equipartition holds in the initial state it is immediately destroyed by collisions. The simplest generalisation of the homogeneous cooling state allows for two temperatures, characterizing translational and rotational degrees of freedom separately. For times larger than a crossover frequency, which is determined by the Enskog frequency and the initial temperature, both energies decay algebraically like t2t^{-2} with a fixed ratio of amplitudes, different from one.Comment: 5 pages, RevTeX, 2 eps figures, slightly expanded discussion, new figures with dimensionless units, added references, accepted for publication in PRE as a Rapid Com
    corecore