29 research outputs found

    Immunological analysis of a Lactococcus lactis-based DNA vaccine expressing HIV gp120

    Get PDF
    For reasons of efficiency Escherichia coli is used today as the microbial factory for production of plasmid DNA vaccines. To avoid hazardous antibiotic resistance genes and endotoxins from plasmid systems used nowadays, we have developed a system based on the food-grade Lactococcus lactis and a plasmid without antibiotic resistance genes. We compared the L. lactis system to a traditional one in E. coli using identical vaccine constructs encoding the gp120 of HIV-1. Transfection studies showed comparable gp120 expression levels using both vector systems. Intramuscular immunization of mice with L. lactis vectors developed comparable gp120 antibody titers as mice receiving E. coli vectors. In contrast, the induction of the cytolytic response was lower using the L. lactis vector. Inclusion of CpG motifs in the plasmids increased T-cell activation more when the E. coli rather than the L. lactis vector was used. This could be due to the different DNA content of the vector backbones. Interestingly, stimulation of splenocytes showed higher adjuvant effect of the L. lactis plasmid. The study suggests the developed L. lactis plasmid system as new alternative DNA vaccine system with improved safety features. The different immune inducing properties using similar gene expression units, but different vector backbones and production hosts give information of the adjuvant role of the silent plasmid backbone. The results also show that correlation between the in vitro adjuvanticity of plasmid DNA and its capacity to induce cellular and humoral immune responses in mice is not straight forward

    The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world

    Get PDF
    Biotechnology has empirically established that it is easier to construct and evaluate variant genes and proteins than to account for the emergence and function of wild-type macromolecules. Systematizing this constructive approach, synthetic biology now promises to infer and assemble entirely novel genomes, cells and ecosystems. It is argued here that the theoretical and computational tools needed for this endeavor are missing altogether. However, such tools may not be required for diversifying organisms at the basic level of their chemical constitution by adding, substituting or removing elements and molecular components through directed evolution under selection. Most importantly, chemical diversification of life forms could be designed to block metabolic cross-feed and genetic cross-talk between synthetic and wild species and hence protect natural habitats and human health through novel types of containment

    Comparison of immune response generated against Japanese encephalitis virus envelope protein expressed by DNA vaccines under macrophage associated versus ubiquitous expression promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis, with ~50,000 cases reported annually worldwide. Vaccination is the only measure for prevention. Recombinant vaccines are an efficient and safe alternative for formalin inactivated or live attenuated vaccines. Nowadays, incorporation of molecular adjuvants has been the main strategy for melioration of vaccines. Our attempt of immunomodulation is based on targeting antigen presenting cells (APC) "majorly macrophages" by using macrosialin promoter. We have compared the immune response of the constructed plasmids expressing JEV envelope (E) protein under the control of aforesaid promoter and cytomegalovirus (CMV) immediate early promoter in mouse model. Protection of immunized mice from lethal challenge with JEV was also studied.</p> <p>Results</p> <p>The E protein was successfully expressed in the macrophage cell line and was detected using immunofluorescence assay (IFA) and Western blotting. APC expressing promoter showed comparable expression to CMV promoter. Immunization of mice with either of the plasmids exhibited induction of variable JEV neutralizing antibody titres and provided protection from challenge with a lethal dose of JEV. Immune splenocytes showed proliferative response after stimulation with the JEV antigen (Ag), however, it was higher for CMV promoter. The magnitude of immunity provided by APC dominant promoter was non-significantly lower in comparison to CMV promoter. More importantly, immune response directed by APC promoter was skewed towards Th1 type in comparison to CMV promoter, this was evaluated by cytokine secretion profile of immune splenocytes stimulated with JEV Ag.</p> <p>Conclusions</p> <p>Thus, our APC-expressing DNA vaccination approach induces comparable immunity in comparison to ubiquitous promoter construct. The predominant Th1 type immune responses provide opportunities to further test its potency suitable for response in antiviral or anticancer vaccines.</p
    corecore