50 research outputs found
Rhinitis in the geriatric population
The current geriatric population in the United States accounts for approximately 12% of the total population and is projected to reach nearly 20% (71.5 million people) by 2030[1]. With this expansion of the number of older adults, physicians will face the common complaint of rhinitis with increasing frequency. Nasal symptoms pose a significant burden on the health of older people and require attention to improve quality of life. Several mechanisms likely underlie the pathogenesis of rhinitis in these patients, including inflammatory conditions and the influence of aging on nasal physiology, with the potential for interaction between the two. Various treatments have been proposed to manage this condition; however, more work is needed to enhance our understanding of the pathophysiology of the various forms of geriatric rhinitis and to develop more effective therapies for this important patient population
Tight Junction-Related Barrier Contributes to the Electrophysiological Asymmetry across Vocal Fold Epithelium
Electrophysiological homeostasis is indispensable to vocal fold hydration. We investigate tight junction (TJ)-associated components, occludin and ZO-1, and permeability with or without the challenge of a permeability-augmenting agent, histamine. Freshly excised ovine larynges are obtained from a local abattoir. TJ markers are explored via reverse transcriptase polymerase chain reaction (RT-PCR). Paracellular permeabilities are measured in an Ussing system. The gene expression of both TJ markers is detected in native ovine vocal fold epithelium. Luminal histamine treatment significantly decreases transepithelial resistance (TER) (N = 72, p<0.01) and increases penetration of protein tracer (N = 35, p<0.001), respectively, in a time-, and dose-dependent fashion. The present study demonstrates that histamine compromises TJ-related paracellular barrier across vocal fold epithelium. The detection of TJ markers indicates the existence of typical TJ components in non-keratinized, stratified vocal fold epithelium. The responsiveness of paracellular permeabilities to histamine would highlight the functional significance of this TJ-equivalent system to the electrophysiological homeostasis, which, in turn, regulates the vocal fold superficial hydration