6 research outputs found
Bounding sequence extremal functions with formations
An -formation is a concatenation of permutations of letters.
If is a sequence with distinct letters, then let be
the maximum length of any -sparse sequence with distinct letters which
has no subsequence isomorphic to . For every sequence define
, the formation width of , to be the minimum for which
there exists such that there is a subsequence isomorphic to in every
-formation. We use to prove upper bounds on
for sequences such that contains an alternation
with the same formation width as .
We generalize Nivasch's bounds on by showing that
and for every and , such that denotes the inverse Ackermann function.
Upper bounds on have been used in other
papers to bound the maximum number of edges in -quasiplanar graphs on
vertices with no pair of edges intersecting in more than points.
If is any sequence of the form such that is a letter,
is a nonempty sequence excluding with no repeated letters and is
obtained from by only moving the first letter of to another place in
, then we show that and . Furthermore we prove that
and for every .Comment: 25 page
Beyond Outerplanarity
We study straight-line drawings of graphs where the vertices are placed in
convex position in the plane, i.e., convex drawings. We consider two families
of graph classes with nice convex drawings: outer -planar graphs, where each
edge is crossed by at most other edges; and, outer -quasi-planar graphs
where no edges can mutually cross. We show that the outer -planar graphs
are -degenerate, and consequently that every
outer -planar graph can be -colored, and this
bound is tight. We further show that every outer -planar graph has a
balanced separator of size . This implies that every outer -planar
graph has treewidth . For fixed , these small balanced separators
allow us to obtain a simple quasi-polynomial time algorithm to test whether a
given graph is outer -planar, i.e., none of these recognition problems are
NP-complete unless ETH fails. For the outer -quasi-planar graphs we prove
that, unlike other beyond-planar graph classes, every edge-maximal -vertex
outer -quasi planar graph has the same number of edges, namely . We also construct planar 3-trees that are not outer
-quasi-planar. Finally, we restrict outer -planar and outer
-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence
on the boundary is a cycle in the graph. For each , we express closed outer
-planarity and \emph{closed outer -quasi-planarity} in extended monadic
second-order logic. Thus, closed outer -planarity is linear-time testable by
Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017