106 research outputs found
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory
VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l.
in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design,
construction techniques and data acquisition system of the HAWC observatory.
HAWC is an air-shower array currently under construction at the same site of
VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water
Cherenkov detectors and two different data acquisition systems. It was in
operation between October 2011 and May 2012 with an average live time of 30%.
Besides the scientific verification purposes, the eight months of data were
used to obtain the results presented in this paper: the detector response to
the Forbush decrease of March 2012, and the analysis of possible emission, at
energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages,
10 figures). Corresponding authors: A.Marinelli and D.Zaboro
The Global COVID-19 Observatory and Resource Center for Childhood Cancer: A response for the pediatric oncology community by SIOP and St. Jude Global
The COVID-19 pandemic quickly led to an abundance of publications and recommendations, despite a paucity of information on how COVID-19 affects children with cancer. This created a dire need for a trusted resource with curated information and a space for the pediatric oncology community to share experiences. The Global COVID-19 Observatory and Resource Center for Childhood Cancer was developed, launched, and maintained by the International Society of Pediatric Oncology and St. Jude Children's Research Hospital. The three components (Resource Library, Global Registry, and Collaboration Space) complement each other, establishing a mechanism to generate and transfer knowledge rapidly throughout the community
The threat of the COVID-19 pandemic on reversing global life-saving gains in the survival of childhood cancer: A call for collaborative action from SIOP, IPSO, PROS, WCC, CCI, st jude global, UICC and WHPCA
The COVID-19 pandemic poses an unprecedented health crisis in all socio-economic regions across the globe. While the pandemic has had a profound impact on access to and delivery of health care by all services, it has been particularly disruptive for the care of patients with life-threatening noncommunicable diseases (NCDs) such as the treatment of children and young people with cancer. The reduction in child mortality from preventable causes over the last 50 years has seen childhood cancer emerge as a major unmet health care need. Whilst survival rates of 85% have been achieved in high income countries, this has not yet been translated into similar outcomes for children with cancer in resource-limited settings where survival averages 30%. Launched in 2018, by the World Health Organization (WHO), the Global Initiative for Childhood Cancer (GICC) is a pivotal effort by the international community to achieve at least 60% survival for children with cancer by 2030. The WHO GICC is already making an impact in many countries but the disruption of cancer care during the COVID-19 pandemic threatens to set back this global effort to improve the outcome for children with cancer, wherever they may live. As representatives of the global community committed to fostering the goals of the GICC, we applaud the WHO response to the COVID-19 pandemic, in particular we support the WHO's call to ensure the needs of patients with life threatening NCDs including cancer are not compromised during the pandemic. Here, as collaborative partners in the GICC, we highlight specific areas of focus that need to be addressed to ensure the immediate care of children and adolescents with cancer is not disrupted during the pandemic; and measures to sustain the development of cancer care so the long-term goals of the GICC are not lost during this global health crisis.Fil: Pritchard Jones, Kathy. University College London; Estados UnidosFil: de Abib, Simone C.V.. International Society Of Paediatric Surgical Oncology; Surinam. Universidade Federal de Sao Paulo; BrasilFil: Esiashvili, Natia. University of Emory; Estados UnidosFil: Kaspers, Gertjan J.L.. Princess Máxima Center for Pediatric Oncology; Países BajosFil: Rosser, Jon. No especifíca;Fil: van Doorninck, John A.. Rocky Mountain Hospital for Children; Estados UnidosFil: Braganca, João M.L.. No especifíca;Fil: Hoffman, Ruth I.. No especifíca;Fil: Rodriguez Galindo, Carlos. St Jude Children’s Research Hospital; Estados UnidosFil: Adams, Cary. Union for International Cancer Control; SuizaFil: Connor, Stephen R.. Worldwide Hospice Palliative Care Alliance; Estados UnidosFil: Abdelhafeez, Abdelhafeez H.. International Society of Paediatric Surgical Oncology; Suiza. St. Jude Children’s Research Hospital; Estados UnidosFil: Bouffet, Eric. University Of Toronto. Hospital For Sick Children; Canadá. International Society of Paediatric Surgical Oncology; SuizaFil: Howard, Scott C.. International Society of Paediatric Surgical Oncology; Suiza. University of Tennessee; Estados UnidosFil: Challinor, Julia M.. International Society of Paediatric Surgical Oncology; Suiza. University of California; Estados UnidosFil: Hessissen, Laila. Children Hospital of Rabat; Marruecos. International Society of Paediatric Surgical Oncology; SuizaFil: Dalvi, Rashmi B.. Bombay Hospital Institute of Medical Sciences; India. International Society of Paediatric Surgical Oncology; SuizaFil: Kearns, Pamela. International Society of Paediatric Surgical Oncology; SuizaFil: Chantada, Guillermo Luis. International Society of Paediatric Surgical Oncology; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frazier, Lindsay A.. International Society of Paediatric Surgical Oncology; Suiza. Dana-Farber Cancer Institute; Estados UnidosFil: Sullivan, Michael J.. University of Melbourne; Australia. International Society of Paediatric Surgical Oncology; SuizaFil: Schulte, Fiona S.M.. University of Calgary; Canadá. International Society of Paediatric Surgical Oncology; SuizaFil: Morrissey, Lisa K.. Boston Children’s Hospital; Estados Unidos. International Society of Paediatric Surgical Oncology; SuizaFil: Kozhaeva, Olga. European Society for Paediatric Oncology; BélgicaFil: Luna Fineman, Sandra. Children’s Hospital Colorado; Estados Unidos. International Society of Paediatric Oncology; SuizaFil: Khan, Muhammad S.. Tawam Hospital; Emiratos Arabes Unido
Sensitization of cervix cancer cells to Adriamycin by Pentoxifylline induces an increase in apoptosis and decrease senescence
<p>Abstract</p> <p>Background</p> <p>Chemotherapeutic drugs like Adriamycin (ADR) induces apoptosis or senescence in cancer cells but these cells often develop resistance and generate responses of short duration or complete failure. The methylxantine drug Pentoxifylline (PTX) used routinely in the clinics setting for circulatory diseases has been recently described to have antitumor properties. We evaluated whether pretreatment with PTX modifies apoptosis and senescence induced by ADR in cervix cancer cells.</p> <p>Methods</p> <p>HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, ADR or PTX + ADR. The cellular toxicity of PTX and survival fraction were determinated by WST-1 and clonogenic assay respectively. Apoptosis, caspase activation and ADR efflux rate were measured by flow cytometry, senescence by microscopy. IκBα and DNA fragmentation were determinated by ELISA. Proapoptotic, antiapoptotic and senescence genes, as well as HPV-E6/E7 mRNA expression, were detected by time real RT-PCR. p53 protein levels were assayed by Western blot.</p> <p>Results</p> <p>PTX is toxic (WST-1), affects survival (clonogenic assay) and induces apoptosis in cervix cancer cells. Additionally, the combination of this drug with ADR diminished the survival fraction and significantly increased apoptosis of HeLa and SiHa cervix cancer cells. Treatments were less effective in HaCaT cells. We found caspase participation in the induction of apoptosis by PTX, ADR or its combination. Surprisingly, in spite of the antitumor activity displayed by PTX, our results indicate that methylxantine, <it>per se </it>does not induce senescence; however it inhibits senescence induced by ADR and at the same time increases apoptosis. PTX elevates IκBα levels. Such sensitization is achieved through the up-regulation of proapoptotic factors such as <it>caspase </it>and <it>bcl </it>family gene expression. PTX and PTX + ADR also decrease E6 and E7 expression in SiHa cells, but not in HeLa cells. p53 was detected only in SiHa cells treated with ADR.</p> <p>Conclusion</p> <p>PTX is a good inducer of apoptosis but does not induce senescence. Furthermore, PTX reduced the ADR-induced senescence and increased apoptosis in cervix cancer cells.</p
- …