14,842 research outputs found

    Kinetically-controlled thin-film growth of layered β\beta- and γ\gamma-Nax_{x}CoO2_{2} cobaltate

    Full text link
    We report growth characteristics of epitaxial β\beta-Na0.6_{0.6}CoO2_{2} and γ\gamma-Na0.7_{0.7}CoO2_{2} thin films on (001) sapphire substrates grown by pulsed-laser deposition. Reduction of deposition rate could change structure of Nax_{x}CoO2_{2} thin film from β\beta-phase with island growth mode to γ\gamma-phase with layer-by-layer growth mode. The γ\gamma-Na0.7_{0.7}CoO2_{2} thin film exhibits spiral surface growth with multiterraced islands and highly crystallized texture compared to that of the β\beta-Na0.6_{0.6}CoO2_{2} thin film. This heterogeneous epitaxial film growth can give opportunity of strain effect of physical properties and growth dynamics of Nax_{x}CoO2_{2} as well as subtle nature of structural change.Comment: accepted for publication in Applied Physics Letter

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    The Issue of Crops Establishment in Burkina Faso Western Area

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is an Invited Paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 5 (2003): G. Son, E.H. Bourarach, and J. Ashburner. The Issue of Crops Establishment in Burkina Faso Western Area. Vol. V. September 2003

    Axial anomaly and magnetism of nuclear and quark matter

    Full text link
    We consider the response of the QCD ground state at finite baryon density to a strong magnetic field B. We point out the dominant role played by the coupling of neutral Goldstone bosons, such as pi^0, to the magnetic field via the axial triangle anomaly. We show that, in vacuum, above a value of B ~ m_pi^2/e, a metastable object appears - the pi^0 domain wall. Because of the axial anomaly, the wall carries a baryon number surface density proportional to B. As a result, for B ~ 10^{19} G a stack of parallel pi^0 domain walls is energetically more favorable than nuclear matter at the same density. Similarly, at higher densities, somewhat weaker magnetic fields of order B ~ 10^{17}-10^{18} G transform the color-superconducting ground state of QCD into new phases containing stacks of axial isoscalar (eta or eta') domain walls. We also show that a quark-matter state known as ``Goldstone current state,'' in which a gradient of a Goldstone field is spontaneously generated, is ferromagnetic due to the axial anomaly. We estimate the size of the fields created by such a state in a typical neutron star to be of order 10^{14}-10^{15} G.Comment: 18 pages, v2: added a discussion of the energy cost of neutralizing the domain wall charg

    Real-time pion propagation in finite-temperature QCD

    Full text link
    We argue that in QCD near the chiral limit, at all temperatures below the chiral phase transition, the dispersion relation of soft pions can be expressed entirely in terms of three temperature-dependent quantities: the pion screening mass, a pion decay constant, and the axial isospin susceptibility. The definitions of these quantities are given in terms of equal-time (static) correlation functions. Thus, all three quantities can be determined directly by lattice methods. The precise meaning of the Gell-Mann--Oakes--Renner relation at finite temperature is given.Comment: 25 pages, 2 figures; v2: discussion on the region of applicability expanded, to be published in PR

    The Viscosity Bound Conjecture and Hydrodynamics of M2-Brane Theory at Finite Chemical Potential

    Full text link
    Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio η/s\eta/s is always bounded from below by a universal multiple of \hbar i.e., /(4πkB)\hbar/(4\pi k_{B}) for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio η/s\eta/s and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.Comment: LaTeX, 26+1 Pages, 4 Figures, Version 2: references adde

    Deuterium site occupancy and phase boundaries in ZrNiDx (0.87<=x<=3.0)

    Get PDF
    ZrNiDx samples with compositions between x=0.87 and x=3.0 were investigated by 2H magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR), powder x-ray diffraction (XRD), neutron vibrational spectroscopy (NVS), and neutron powder diffraction (NPD). The rigid-lattice MAS-NMR spectrum for a ZrNiD0.88 sample in the triclinic beta phase shows a single phase with two well-resolved resonances at +11.5 and −1.7 ppm, indicating that two inequivalent D sites are occupied, as was observed previously in ZrNiD1.0. For ZrNiD0.88, the ratio of spectral intensities of the two lines is 1:0.76, indicating that the D site corresponding to the +11.5 ppm line has the lower site energy and is fully occupied. Similarly, the neutron vibrational spectra for ZrNiD0.88 clearly confirm that at least two sites are occupied. For ZrNiD1.0, XRD indicates that ~5% of the metal atoms are in the gamma phase, corresponding to an upper composition for the beta phase of x=0.90±0.04, consistent with the MAS-NMR and neutron vibrational spectra indicating that x=0.88 is single phase. The MAS-NMR and NVS of ZrNiD1.87 indicate a mixed-phase sample (beta+gamma) and clearly show that the two inequivalent sites observed at x=0.88 cannot be attributed to the sites normally occupied in the gamma phase. For ZrNiD2.75, NPD results indicate a gamma-phase boundary of x=2.86±0.03 at 300 K, increasing to 2.93±0.02 at 180 K and below, in general agreement with the phase boundary estimated from the NVS and MAS-NMR spectra of ZrNiD1.87. Rigid-lattice 2H MAS-NMR spectra of ZrNiD2.75 and ZrNiD2.99 show a ratio of spectral intensities of 1.8±0.1:1 and 2.1±0.1:1 (Zr3Ni:Zr3Ni2), respectively, indicating complete occupancy of the lower-energy Zr3Ni2 site, consistent with the NPD results. For each composition, the correlation time for deuterium hopping was determined at the temperature where resolved peaks in the MAS-NMR spectrum coalesce due to motion between inequivalent D sites. The measured correlation times are consistent with previously determined motional parameters for ZrNiHx

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR

    Shear viscosity from R-charged AdS black holes

    Full text link
    We compute the shear viscosity in the supersymmetric Yang-Mills theory dual to the STU background. This is a thermal gauge theory with a chemical potential. The quotient of the shear viscosity over the entropy density exhibits no deviation from the well known result 1/4\pi.Comment: 9 pages, some references updated, abstract and some typos correcte

    Universal four-component Fermi gas in one dimension

    Full text link
    A four-component Fermi gas in one dimension with a short-range four-body interaction is shown to exhibit a one-dimensional analog of the BCS-BEC crossover. Its low-energy physics is governed by a Tomonaga-Luttinger liquid with three spin gaps. The spin gaps are exponentially small in the weak coupling (BCS) limit where they arise from the charge-density-wave instability, and become large in the strong coupling (BEC) limit because of the formation of tightly-bound tetramers. We investigate the ground-state energy, the sound velocity, and the gap spectrum in the BCS-BEC crossover and discuss exact relationships valid in our system. We also show that a one-dimensional analog of the Efimov effect occurs for five bosons while it is absent for fermions. Our work opens up a very rich new field of universal few-body and many-body physics in one dimension.Comment: 9 pages, 3 figures; (v2) Efimov effect for 5 bosons in 1D is discussed; (v3) expanded versio
    corecore