25 research outputs found

    Changes in the ornithine cycle following ionising radiation cause a cytotoxic conditioning of the culture medium of H35 hepatoma cells

    Get PDF
    Cultured H35 hepatoma cells release a cytotoxic factor in response to irradiation with X-rays. When the conditioned medium from irradiated cells is given to nonirradiated cells, growth is inhibited and followed by cell death, possibly apoptosis, Analysis of the conditioned medium reveals a dramatic change in the ornithine (urea) cycle components after the irradiation. A strong decrease in medium arginine is accompanied with parallel increases in ornithine, citrulline and ammonia. The high level of ammonia appears to be largely responsible for the observed cytotoxicity. The development of hyperammonia by irradiated cells and the related toxicity depend on the radiation dose and the number of cells seeded thereafter for the medium conditioning. Development of cytotoxicity by irradiated cells is completely prevented with the arginase inhibitor L-norvaline, in arginine-deficient medium or when citrulline replaces arginine. These preventive measures result in subtoxic ammonia levels

    Properties of mouse CD40: differential expression of CD40 epitopes on dendritic cells and epithelial cells.

    No full text
    In this study we describe the tissue distribution of mouse CD40 using two monoclonal antibodies (mAb) against different epitopes of the molecule. In lymphoid tissues CD40 was expressed by B lymphocytes. Most B cells in typical B-cell compartments were CD40-positive, including germinal centre B cells. Interestingly, the two CD40 epitopes were differentially distributed on subpopulations of dendritic cells and epithelial cells. The 3/23 mAb, but not 3/3, recognized interdigitating dendritic cells (IDC) in lymph nodes, spleen and thymus. Langerhans cells were CD40 negative. In contrast, epithelial cells in the thymus and some other tissues (e.g. skin) were stained with the 3/3 mAb, but not with the 3/23 mAb. The expression of CD40 on dendritic cells and epithelial cells is in agreement with earlier findings in humans. Our data also demonstrate that different epitopes of CD40 are differentially expressed on dendritic cells and epithelial cells. This suggests the existence of different forms of CD40, that are expressed in a cell-type-specific fashion
    corecore