409 research outputs found
The Berlin Exoplanet Search Telescope II. Catalog of Variable Stars. I. Characterization of Three Southern Target Fields
A photometric survey of three Southern target fields with BEST II yielded the
detection of 2,406 previously unknown variable stars and an additional 617
stars with suspected variability. This study presents a catalog including their
coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of
variability. In addition, the variability of 17 known objects is confirmed,
thus validating the results. The catalog contains a number of known and new
variables that are of interest for further astrophysical investigations, in
order to, e.g., search for additional bodies in eclipsing binary systems, or to
test stellar interior models.
Altogether, 209,070 stars were monitored with BEST II during a total of 128
nights in 2009/2010. The overall variability fraction of 1.2-1.5% in these
target fields is well comparable to similar ground-based photometric surveys.
Within the main magnitude range of , we identify
0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness
of about one third for this particular type in comparison to space surveys.Comment: accepted to A
Variability survey in the CoRoT SRa01 field: Implications of eclipsing binary distribution on cluster formation in NGC 2264
Time-series photometry of the CoRoT field SRa01 was carried out with the
Berlin Exoplanet Search Telescope II (BEST II) in 2008/2009. A total of 1,161
variable stars were detected, of which 241 were previously known and 920 are
newly found. Several new, variable young stellar objects have been discovered.
The study of the spatial distribution of eclipsing binaries revealed the higher
relative frequency of Algols toward the center of the young open cluster NGC
2264. In general Algol frequency obeys an isotropic distribution of their
angular momentum vectors, except inside the cluster, where a specific
orientation of the inclinations is the case. We suggest that we see the orbital
plane of the binaries almost edge-on.Comment: 18 pages, 8 figures, accepted for publication in Ap
Development of New Tuberculosis Vaccines: A Global Perspective on Regulatory Issues
What are the regulatory challenges for testing and introducing investigative TB vaccines into countries where the disease is endemic
The secondary eclipses of WASP-19b as seen by the ASTEP 400 telescope from Antarctica
The ASTEP (Antarctica Search for Transiting ExoPlanets) program was
originally aimed at probing the quality of the Dome C, Antarctica for the
discovery and characterization of exoplanets by photometry. In the first year
of operation of the 40 cm ASTEP 400 telescope (austral winter 2010), we
targeted the known transiting planet WASP-19b in order to try to detect its
secondary transits in the visible. This is made possible by the excellent
sub-millimagnitude precision of the binned data. The WASP-19 system was
observed during 24 nights in May 2010. The photometric variability level due to
starspots is about 1.8% (peak-to-peak), in line with the SuperWASP data from
2007 (1.4%) and larger than in 2008 (0.07%). We find a rotation period of
WASP-19 of 10.7 +/- 0.5 days, in agreement with the SuperWASP determination of
10.5 +/- 0.2 days. Theoretical models show that this can only be explained if
tidal dissipation in the star is weak, i.e. the tidal dissipation factor Q'star
> 3.10^7. Separately, we find evidence for a secondary eclipse of depth 390 +/-
190 ppm with a 2.0 sigma significance, a phase consistent with a circular orbit
and a 3% false positive probability. Given the wavelength range of the
observations (420 to 950 nm), the secondary transit depth translates into a day
side brightness temperature of 2690(-220/+150) K, in line with measurements in
the z' and K bands. The day side emission observed in the visible could be due
either to thermal emission of an extremely hot day side with very little
redistribution of heat to the night side, or to direct reflection of stellar
light with a maximum geometrical albedo Ag=0.27 +/- 0.13. We also report a
low-frequency oscillation well in phase at the planet orbital period, but with
a lower-limit amplitude that could not be attributed to the planet phase alone,
and possibly contaminated with residual lightcurve trends.Comment: Accepted for publication in Astronomy and Astrophysics, 13 pages, 13
figure
Derivative based global sensitivity measures
The method of derivative based global sensitivity measures (DGSM) has
recently become popular among practitioners. It has a strong link with the
Morris screening method and Sobol' sensitivity indices and has several
advantages over them. DGSM are very easy to implement and evaluate numerically.
The computational time required for numerical evaluation of DGSM is generally
much lower than that for estimation of Sobol' sensitivity indices. This paper
presents a survey of recent advances in DGSM concerning lower and upper bounds
on the values of Sobol' total sensitivity indices . Using these
bounds it is possible in most cases to get a good practical estimation of the
values of . Several examples are used to illustrate an
application of DGSM
ASTEP South: An Antarctic Search for Transiting ExoPlanets around the celestial South pole
ASTEP South is the first phase of the ASTEP project (Antarctic Search for
Transiting ExoPlanets). The instrument is a fixed 10 cm refractor with a 4kx4k
CCD camera in a thermalized box, pointing continuously a 3.88 degree x 3.88
degree field of view centered on the celestial South pole. ASTEP South became
fully functional in June 2008 and obtained 1592 hours of data during the 2008
Antarctic winter. The data are of good quality but the analysis has to account
for changes in the point spread function due to rapid ground seeing variations
and instrumental effects. The pointing direction is stable within 10 arcseconds
on a daily timescale and drifts by only 34 arcseconds in 50 days. A truly
continuous photometry of bright stars is possible in June (the noon sky
background peaks at a magnitude R=15 arcsec-2 on June 22), but becomes
challenging in July (the noon sky background magnitude is R=12.5 arcsec?2 on
July 20). The weather conditions are estimated from the number of stars
detected in the field. For the 2008 winter, the statistics are between 56.3 %
and 68.4 % of excellent weather, 17.9 % to 30 % of veiled weather and 13.7 % of
bad weather. Using these results in a probabilistic analysis of transit
detection, we show that the detection efficiency of transiting exoplanets in
one given field is improved at Dome C compared to a temperate site such as La
Silla. For example we estimate that a year-long campaign of 10 cm refractor
could reach an efficiency of 69 % at Dome C versus 45 % at La Silla for
detecting 2-day period giant planets around target stars from magnitude 10 to
15. This shows the high potential of Dome C for photometry and future planet
discoveries. [Short abstract
Phage typing and clonal analysis of Salmonella Heidelberg strains isolated from animals and other sources from Minnesota (USA) and Germany
Salmonella Heidelberg isolates has become an emerging pathogen during the 80s in the United States (Martin et al., 1989). Approximately 60% of human cases reported to the CDC in 1995 were caused by only four serovars, including S. Enteridis (24,7%), S. Typhimurium (23,5%), S. Newport (6,2%) and S. Heidelberg (5,1%), (CDC, Salmonella surveillance) and were frequently isolated from chicken and pork (Sawari et al., 2001)
Diagnostic assays for leprosy based on T-cell epitopes.
To date, only a limited number of antigens have been described as specific for Mycobacterium leprae, and in many cases, homologues have subsequently been shown to exist in mycobacteria such as M. avium and M. intracellulare. A Leprosy Synthetic Peptide Skin Test Initiative was established by the Steering Committee on the Immunology of Mycobacteria of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, to investigate the potential of synthetic peptides that encode T-cell epitopes as diagnostic tools, which could be used to develop a skin-test reagent specific for leprosy. Such M. leprae-specific peptides should have unique amino acid sequences, or significant sequence-dissimilarity from those in other mycobacteria. Synthetic peptides, 15 amino acids long, were synthesised from 33 genes or open reading frames within the M. leprae genome. Tuberculoid leprosy patients from four leprosy-endemic countries, Brazil, Ethiopia, Nepal and Pakistan, were tested as subjects known to have been infected with M. leprae, and to make good T-cell responses to antigens of M. leprae; UK blood donors were used as non-exposed or non-infected subjects. Peptides inducing potentially specific responses in leprosy patients and not in UK controls, and those inducing cross-reaction responses, present in both leprosy patients and non-exposed, non-infected controls, were identified. A difference from the equivalent M. tuberculosis sequence of five or more amino acid residues did not, by itself, identify peptides that were M. leprae-specific, suggesting that many of these peptides may have homologues in environmental mycobacteria. To date, this approach has identified a number of peptides with greater than 90% specificity and 19-47% sensitivity, which are undergoing further specificity-testing. Such peptides would have great potential as T-cell reagents with which to monitor exposure to M. leprae within communities, formulated either as skin-test reagents, or as antigens for tests in vitro
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
- …