2,723 research outputs found
Real-Time Imaging of K atoms on Graphite: Interactions and Diffusion
Scanning tunneling microscopy (STM) at liquid helium temperature is used to
image potassium adsorbed on graphite at low coverage (~0.02 monolayer). Single
atoms appear as protrusions on STM topographs. A statistical analysis of the
position of the atoms demonstrates repulsion between adsorbates, which is
quantified by comparison with molecular dynamics simulations. This gives access
to the dipole moment of a single adsorbate, found to be 10.5 Debye. Time lapse
imaging shows that long range order is broken by thermally activated diffusion,
with a 32 meV barrier to hopping between graphite lattice sites
Critical dynamics of diluted relaxational models coupled to a conserved density (diluted model C)
We consider the influence of quenched disorder on the relaxational critical
dynamics of a system characterized by a non-conserved order parameter coupled
to the diffusive dynamics of a conserved scalar density (model C). Disorder
leads to model A critical dynamics in the asymptotics, however it is the
effective critical behavior which is often observed in experiments and in
computer simulations and this is described by the full set of dynamical
equations of diluted model C. Indeed different scenarios of effective critical
behavior are predicted.Comment: 4 pages, 5 figure
Ground state spin and Coulomb blockade peak motion in chaotic quantum dots
We investigate experimentally and theoretically the behavior of Coulomb
blockade (CB) peaks in a magnetic field that couples principally to the
ground-state spin (rather than the orbital moment) of a chaotic quantum dot. In
the first part, we discuss numerically observed features in the magnetic field
dependence of CB peak and spacings that unambiguously identify changes in spin
S of each ground state for successive numbers of electrons on the dot, N. We
next evaluate the probability that the ground state of the dot has a particular
spin S, as a function of the exchange strength, J, and external magnetic field,
B. In the second part, we describe recent experiments on gate-defined GaAs
quantum dots in which Coulomb peak motion and spacing are measured as a
function of in-plane magnetic field, allowing changes in spin between N and N+1
electron ground states to be inferred.Comment: To appear in Proceedings of the Nobel Symposium 2000 (Physica
Scripta
Critical light scattering in liquids
We compare theoretical results for the characteristic frequency of the
Rayleigh peak calculated in one-loop order within the field theoretical method
of the renormalization group theory with experiments and other theoretical
results. Our expressions describe the non-asymptotic crossover in temperature,
density and wave vector. In addition we discuss the frequency dependent shear
viscosity evaluated within the same model and compare our theoretical results
with recent experiments in microgravity.Comment: 17 pages, 12 figure
Model C critical dynamics of random anisotropy magnets
We study the relaxational critical dynamics of the three-dimensional random
anisotropy magnets with the non-conserved n-component order parameter coupled
to a conserved scalar density. In the random anisotropy magnets the structural
disorder is present in a form of local quenched anisotropy axes of random
orientation. When the anisotropy axes are randomly distributed along the edges
of the n-dimensional hypercube, asymptotical dynamical critical properties
coincide with those of the random-site Ising model. However structural disorder
gives rise to considerable effects for non-asymptotic critical dynamics. We
investigate this phenomenon by a field-theoretical renormalization group
analysis in the two-loop order. We study critical slowing down and obtain
quantitative estimates for the effective and asymptotic critical exponents of
the order parameter and scalar density. The results predict complex scenarios
for the effective critical exponent approaching an asymptotic regime.Comment: 8 figures, style files include
Conductance fluctuations in quasi-two-dimensional systems: a practical view
The universal conductance fluctuations of quasi-two-dimensional systems are
analyzed with experimental considerations in mind. The traditional statistical
metrics of these fluctuations (such as variance) are shown to have large
statistical errors in such systems. An alternative characteristic is
identified, the inflection point of the correlation function in magnetic field,
which is shown to be significantly more useful as an experimental metric and to
give a more robust measure of phase coherence.Comment: 9 pages, 7 figure
- …