14 research outputs found

    Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers

    Full text link
    Maternal obesity due to long-term high-fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague-Dawley rats (8 weeks old) were fed a cafeteria-style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre- and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin-4 receptor (MC4R) and its downstream target single-minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti-related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth. © 2009 The Obesity Society

    A systematic review on animal models of maternal high fat feeding and offspring glycaemic control

    Full text link
    The mechanistic link between obese parents and obese offspring and the relative role of genes, and a shared environment is not completely understood. Animal models help us to differentiate between genetic and environmental factors, and the interaction between the two. However, the willingness of researchers to blend results from multiple models makes it difficult for clear mechanisms to be identified for specific hypothesis-driven research. As such we conducted a systematic review of animal models of maternal high fat feeding in an effort to identify the affect on the offspring glycaemic control. Maternal and offspring outcomes are reported in an effort to identify possible relationships to facilitate and focus on future research. We present here data from 11 studies investigating glycaemic control in offspring exposed to a high fat diet (HFD) during maternal gestation only or gestation and lactation. Studies in this review identify a real risk of type 2 diabetes and obesity in male offspring exposed to a maternal HFD. Poor glycaemic control in the offspring appears to be independent of maternal obesity, birth weight or post-weaning macronutrient intake. Inconsistencies between studies however, limit our capacity to identify mechanisms for the developmental origin of these diseases in animal models of overnutrition.H Ainge, C Thompson, SE Ozanne and KB Roone

    Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet

    Full text link
    Significant alterations in maternal nutrition may induce long-term metabolic consequences in offspring, in particular obesity and leptin and insulin resistance. Although maternal nutrient deprivation has been well characterized in this context, there is a relative paucity of data on how high fat (HF) nutrition impacts on the subsequent generation. The present study investigated the effects of maternal HF nutrition either throughout the mother's life up to and including pregnancy and lactation or HF nutrition restricted to pregnancy and lactation, on growth and metabolic parameters in male and female offspring. Virgin Wistar rats were assigned to one of three experimental groups: (1) controls (Cont): dams fed a standard chow diet throughout their life and throughout pregnancy and lactation; (2) maternal high fat (MHF) group: dams fed a HF diet from weaning up to and throughout pregnancy and lactation; and (3) pregnancy and lactation high fat (PLHF): dams fed a chow diet through their life until conception and then fed a HF diet throughout pregnancy and lactation. At weaning, all offspring were fed either a chow or HF diet for the remainder of the study (160 days). Litter size and sex ratios were not significantly different between the groups. MHF and PLHF offspring had significantly lower body weights and were hypoleptinaemic and hypoinsulinaemic at birth compared to Cont offspring. As adults however, chow-fed MHF and PLHF offspring were significantly more obese than Cont offspring (DEXA scanning at day 150, P < 0.001 for maternal HF diet). As expected a postweaning HF diet resulted in increased adiposity in all groups; MHF and PLHF offspring, however, always remained significantly more obese than Cont offspring. Increased adiposity in MHF and PLHF offspring was paralleled by hyperinsulinaemia and hyperleptinaemia (P < 0.001; MHF and PLHF versus Cont). It is of interest that a lifetime of HF nutrition produced a similar offspring phenotype to HF nutrition restricted to pregnancy and lactation alone, thus suggesting that the postnatal sequelae of maternal HF nutrition occurs independent of preconceptional diet. These data further reinforce the importance of maternal nutrition during these critical windows of development and show that maternal HF feeding can induce a markedly obese phenotype in male and female offspring completely independent of postnatal nutrition
    corecore