5 research outputs found

    Fine-scale niche structure of Neotropical forests reflects a legacy of the Great American Biotic Interchange

    Full text link
    The tendency of species to retain their ancestral niches may link processes that determine community assembly with biogeographic histories that span geological time scales. Biogeo- graphic history is likely to have had a particularly strong impact on Neotropical forests because of the influence of the Great American Biotic Interchange, which followed emergence of a land connection between North and South America B3Ma. Here we examine the community structure, ancestral niches and ancestral distributions of the related, hyperdiverse woody plant genera Psychotria and Palicourea (Rubiaceae) in Panama. We find that 49% of the variation in hydraulic traits, a strong determinant of community structure, is explained by species’ origins in climatically distinct biogeographic regions. Niche evolution models for a regional sample of 152 species indicate that ancestral climatic niches are associated with species’ habitat distributions, and hence local community structure and composition, even millions of years after dispersal into new geographic regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99545/1/Sedioetal2013.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99545/2/Sedioetal2013suppl..pdf8

    Likelihood reinstates Archaeopteryx as a primitive bird

    No full text
    The widespread view that Archaeopteryx was a primitive (basal) bird has been recently challenged by a comprehensive phylogenetic analysis that placed Archaeopteryx with deinonychosaurian theropods. The new phylogeny suggested that typical bird flight (powered by the front limbs only) either evolved at least twice, or was lost/modified in some deinonychosaurs. However, this parsimony-based result was acknowledged to be weakly supported. Maximum-likelihood and related Bayesian methods applied to the same dataset yield a different and more orthodox result: Archaeopteryx is restored as a basal bird with bootstrap frequency of 73 per cent and posterior probability of 1. These results are consistent with a single origin of typical (forelimb-powered) bird flight. The Archaeopteryx–deinonychosaur clade retrieved by parsimony is supported by more characters (which are on average more homoplasious), whereas the Archaeopteryx–bird clade retrieved by likelihood-based methods is supported by fewer characters (but on average less homoplasious). Both positions for Archaeopteryx remain plausible, highlighting the hazy boundary between birds and advanced theropods. These results also suggest that likelihood-based methods (in addition to parsimony) can be useful in morphological phylogenetics.Michael S. Y. Lee and Trevor H. Worth
    corecore