614 research outputs found

    A Bayesian Inference Analysis of the X-ray Cluster Luminosity-Temperature Relation

    Get PDF
    We present a Bayesian inference analysis of the Markevitch (1998) and Allen & Fabian (1998) cooling flow corrected X-ray cluster temperature catalogs that constrains the slope and the evolution of the empirical X-ray cluster luminosity-temperature (L-T) relation. We find that for the luminosity range 10^44.5 erg s^-1 < L_bol < 10^46.5 erg s^-1 and the redshift range z < 0.5, L_bol is proportional to T^2.80(+0.15/-0.15)(1+z)^(0.91-1.12q_0)(+0.54/-1.22). We also determine the L-T relation that one should use when fitting the Press- Schechter mass function to X-ray cluster luminosity catalogs such as the Einstein Medium Sensitivity Survey (EMSS) and the Southern Serendipitous High- Redshift Archival ROSAT Catalog (Southern SHARC), for which cooling flow corrected luminosities are not determined and a universal X-ray cluster temperature of T = 6 keV is assumed. In this case, L_bol is proportional to T^2.65(+0.23/-0.20)(1+z)^(0.42-1.26q_0)(+0.75/-0.83) for the same luminosity and redshift ranges.Comment: Accepted to The Astrophysical Journal, 20 pages, LaTe

    GRB 970228 Revisited: Evidence for a Supernova in the Light Curve and La te Spectral Energy Distribution of the Afterglow

    Get PDF
    At the time of its discovery, the optical and X-ray afterglow of GRB 970228 appeared to be a ringing endorsement of the previously untried relativistic fireball model of gamma-ray burst (GRB) afterglows, but now that nearly a dozen optical afterglows to GRBs have been observed, the wavering light curve and reddening spectrum of this afterglow make it perhaps the most difficult of the observed afterglows to reconcile with the fireball model. In this Letter, we argue that this afterglow's unusual temporal and spectral properties can be attributed to a supernova that overtook the light curve nearly two weeks after the GRB. This is the strongest case yet for a GRB/supernova connection. It strengthens the case that a supernova also dominated the late afterglow of GRB 980326, and the case that GRB 980425 is related to SN 1998bw.Comment: Accepted to The Astrophysical Journal (Letters), 14 pages, LaTe

    GRB 970228 and GRB 980329 and the Nature of Their Host Galaxie

    Get PDF
    We find that the local galactic extinction towards the field of gamma-ray burst GRB970228 is AV=1.09−0.20+0.10A_V=1.09^{+0.10}_{-0.20}, which implies a substantial dimming and change in the spectral slope of the intrinsic GRB970228 afterglow. We measure a color (V606−I814)ST=−0.18−0.61+0.51(V_{606}-I_{814})_{ST} = -0.18^{+0.51}_{-0.61} for the extended source coincident with the afterglow. Taking into account our measurement of the extinction toward this field, this color implies that the extended source is most likely a galaxy undergoing star formation, in agreement with our earlier conclusion (\cite{CL98}). In a separate analysis, we find that the inferred intrinsic spectrum of the GRB 980329 afterglow is consistent with the predictions of the simplest relativistic fireball model. We also find that the intrinsic spectrum of the afterglow is extincted both by dust (source frame A_V \ga 1 mag), and that the shape of the extinction curve is typical of young star-forming regions like the Orion Nebula but is not typical of older star-forming or starburst regions. The ≈\approx 2 mag drop between the RR and the II bands can be explained by the far-ultraviolet non-linear component of the extinction curve if 3 \la z \la 4, and by the 2175 Å\ bump if $z given our general model

    A Photometric Investigation of the GRB970228 Afterglow and the Associated Nebulosity

    Full text link
    We carefully analyze the WFPC2 and STIS images of GRB970228. We measure magnitudes for the GRB970228 point source component in the WFPC2 images of V=26.20−0.13+0.14V=26.20^{+0.14}_{-0.13}, Ic=23.94−0.09+0.10I_c=23.94^{+0.10}_{-0.09} and V=26.52−0.18+0.16V=26.52^{+0.16}_{-0.18}, Ic=24.31−0.11+0.15I_c=24.31^{+0.15}_{-0.11} on March 26 and April 7, respectively; and Rc=27.09−0.14+0.14R_c=27.09^{+0.14}_{-0.14} on September 4 in the STIS image. For the extended component, we measure magnitudes of Rc=25.48−0.20+0.22R_c=25.48^{+0.22}_{-0.20} in the combined WFPC2 images and Rc=25.54−0.22+0.33R_c=25.54^{+0.33}_{-0.22} in the STIS image, which are consistent with no variation. This value is fainter than previously reported (Galama et al. 98) and modifies the previously assumed magnitudes for the optical transient when it faded to a level where the extended source component contribution was not negligible, alleviating the discrepancy to a power-law temporal behavior. We also measure a color of V606−I814=−0.18−0.61+0.51V_{606}-I_{814}=-0.18^{+0.51}_{-0.61} for the extended source component. Taking into account the extinction measured in this field (Castander & Lamb 1998), this color implies that the extended source is most likely a galaxy with ongoing star formation.Comment: 21 pages, including 8 figures. Submitted to Ap

    Supernova 2012ec: Identification of the progenitor and early monitoring with PESSTO

    Get PDF
    We present the identification of the progenitor of the Type IIP SN 2012ec in archival pre-explosion HST WFPC2 and ACS/WFC F814W images. The properties of the progenitor are further constrained by non-detections in pre-explosion WFPC2 F450W and F606W images. We report a series of early photometric and spectroscopic observations of SN 2012ec. The r'-band light curve shows a plateau with M(r')=-17.0. The early spectrum is similar to the Type IIP SN 1999em, with the expansion velocity measured at Halpha absorption minimum of -11,700 km/s (at 1 day post-discovery). The photometric and spectroscopic evolution of SN 2012ec shows it to be a Type IIP SN, discovered only a few days post-explosion (<6d). We derive a luminosity for the progenitor, in comparison with MARCS model SEDs, of log L/Lsun = 5.15+/-0.19, from which we infer an initial mass range of 14-22Msun. This is the first SN with an identified progenitor to be followed by the Public ESO Spectroscopic Survey of Transient Objects (PESSTO).Comment: 6 pages, 3 figures, MNRAS accepte

    The fading of Cassiopeia A, and improved models for the absolute spectrum of primary radio calibration sources

    Get PDF
    Based on five years of observations with the 40-foot telescope at Green Bank Observatory (GBO), Reichart & Stephens (2000) found that the radio source Cassiopeia A had either faded more slowly between the mid-1970s and late 1990s than Baars et al. (1977) had found it to be fading between the late 1940s and mid-1970s, or that it had rebrightened and then resumed fading sometime between the mid-1970s and mid-1990s, in L band (1.4 GHz). Here, we present 15 additional years of observations of Cas A and Cyg A with the 40-foot in L band, and three and a half additional years of observations of Cas A, Cyg A, Tau A, and Vir A with GBO's recently refurbished 20-meter telescope in L and X (9 GHz) bands. We also present a more sophisticated analysis of the 40-foot data, and a reanalysis of the Baars et al. (1977) data, which reveals small, but non-negligible differences. We find that overall, between the late 1950s and late 2010s, Cas A faded at an average rate of 0.670±0.0190.670 \pm 0.019 %/yr in L band, consistent with Reichart & Stephens (2000). However, we also find, at the 6.3σ\sigma credible level, that it did not fade at a constant rate. Rather, Cas A faded at a faster rate through at least the late 1960s, rebrightened (or at least faded at a much slower rate), and then resumed fading at a similarly fast rate by, at most, the late 1990s. Given these differences from the original Baars et al. (1977) analysis, and given the importance of their fitted spectral and temporal models for flux-density calibration in radio astronomy, we update and improve on these models for all four of these radio sources. In doing so, we additionally find that Tau A is fading at a rate of 0.102−0.043+0.0420.102^{+0.042}_{-0.043} %/yr in L band.Comment: 17 pages, 12 figures, accepted to MNRA

    The Cosmic Gamma-Ray Bursts

    Get PDF
    Cosmic gamma-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean gamma-ray energies after the beaming corrections are ~ 10^51 erg. Bursts are associated with faint ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host galaxies span a range of luminosities and morphologies, but appear to be broadly typical for the normal, actively star-forming galaxy populations at comparable redshifts and magnitudes. Some of the challenges for the future include: the nature of the short bursts and possibly other types of bursts and transients; use of GRBs to probe the obscured star formation in the universe, and possibly as probes of the very early universe; and their detection as sources of high-energy particles and gravitational waves.Comment: An invited review, to appear in: Proc. IX Marcel Grossmann Meeting, eds. V. Gurzadyan, R. Jantzen, and R. Ruffini, Singapore: World Scientific, in press (2001); Latex file, 33 pages, 22 eps figures, style files include

    SDSS-RASS: Next Generation of Cluster-Finding Algorithms

    Get PDF
    We outline here the next generation of cluster-finding algorithms. We show how advances in Computer Science and Statistics have helped develop robust, fast algorithms for finding clusters of galaxies in large multi-dimensional astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically, this paper presents four new advances: (1) A new semi-parametric algorithm - nicknamed ``C4'' - for jointly finding clusters of galaxies in the SDSS and ROSAT All-Sky Survey databases; (2) The introduction of the False Discovery Rate into Astronomy; (3) The role of kernel shape in optimizing cluster detection; (4) A new determination of the X-ray Cluster Luminosity Function which has bearing on the existence of a ``deficit'' of high redshift, high luminosity clusters. This research is part of our ``Computational AstroStatistics'' collaboration (see Nichol et al. 2000) and the algorithms and techniques discussed herein will form part of the ``Virtual Observatory'' analysis toolkit.Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000, Garching, German

    Implantation of labelled single nitrogen vacancy centers in diamond using 15N

    Full text link
    Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spectrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.Comment: 14 pages, 3 figures, to appear in Applied Physics Letter
    • 

    corecore