17 research outputs found
Entanglement measurement with discrete multiple coin quantum walks
Within a special multi-coin quantum walk scheme we analyze the effect of the
entanglement of the initial coin state. For states with a special entanglement
structure it is shown that this entanglement can be meausured with the mean
value of the walk, which depends on the i-concurrence of the initial coin
state. Further on the entanglement evolution is investigated and it is shown
that the symmetry of the probability distribution is reflected by the symmetry
of the entanglement distribution.Comment: 9 pages, IOP styl
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa