17 research outputs found

    Entanglement measurement with discrete multiple coin quantum walks

    Full text link
    Within a special multi-coin quantum walk scheme we analyze the effect of the entanglement of the initial coin state. For states with a special entanglement structure it is shown that this entanglement can be meausured with the mean value of the walk, which depends on the i-concurrence of the initial coin state. Further on the entanglement evolution is investigated and it is shown that the symmetry of the probability distribution is reflected by the symmetry of the entanglement distribution.Comment: 9 pages, IOP styl

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore