406 research outputs found

    Looking for a Black Cat in a Dark Room: Security Visualization for Cyber-Physical System Design and Analysis

    Full text link
    Today, there is a plethora of software security tools employing visualizations that enable the creation of useful and effective interactive security analyst dashboards. Such dashboards can assist the analyst to understand the data at hand and, consequently, to conceive more targeted preemption and mitigation security strategies. Despite the recent advances, model-based security analysis is lacking tools that employ effective dashboards---to manage potential attack vectors, system components, and requirements. This problem is further exacerbated because model-based security analysis produces significantly larger result spaces than security analysis applied to realized systems---where platform specific information, software versions, and system element dependencies are known. Therefore, there is a need to manage the analysis complexity in model-based security through better visualization techniques. Towards that goal, we propose an interactive security analysis dashboard that provides different views largely centered around the system, its requirements, and its associated attack vector space. This tool makes it possible to start analysis earlier in the system lifecycle. We apply this tool in a significant area of engineering design---the design of cyber-physical systems---where security violations can lead to safety hazards

    Progressive influence of body mass index-associated genetic markers in rural Gambians.

    Get PDF
    BACKGROUND: In populations of European ancestry, the genetic contribution to body mass index (BMI) increases with age during childhood but then declines during adulthood, possibly due to the cumulative effects of environmental factors. How the effects of genetic factors on BMI change with age in other populations is unknown. SUBJECTS AND METHODS: In a rural Gambian population (N=2535), we used a combined allele risk score, comprising genotypes at 28 'Caucasian adult BMI-associated' single nucleotide polymorphisms (SNPs), as a marker of the genetic influence on body composition, and related this to internally-standardised z-scores for birthweight (zBW), weight-for-height (zWT-HT), weight-for-age (zWT), height-for-age (zHT), and zBMI cross-sectionally and longitudinally. RESULTS: Cross-sectionally, the genetic score was positively associated with adult zWT (0.018±0.009 per allele, p=0.034, N=1426) and zWT-HT (0.025±0.009, p=0.006), but not with size at birth or childhood zWT-HT (0.008±0.005, p=0.11, N=2211). The effect of the genetic score on zWT-HT strengthened linearly with age from birth through to late adulthood (age interaction term: 0.0083 z-scores/allele/year; 95% CI 0.0048 to 0.0118, p=0.0000032). CONCLUSIONS: Genetic variants for obesity in populations of European ancestry have direct relevance to bodyweight in nutritionally deprived African settings. In such settings, genetic obesity susceptibility appears to regulate change in weight status throughout the life course, which provides insight into its potential physiological role

    Mendelian Randomisation Study of Childhood BMI and Early Menarche

    Get PDF
    To infer the causal association between childhood BMI and age at menarche, we performed a mendelian randomisation analysis using twelve established “BMI-increasing” genetic variants as an instrumental variable (IV) for higher BMI. In 8,156 women of European descent from the EPIC-Norfolk cohort, height was measured at age 39–77 years; age at menarche was self-recalled, as was body weight at age 20 years, and BMI at 20 was calculated as a proxy for childhood BMI. DNA was genotyped for twelve BMI-associated common variants (in/near FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, ETV5, MTCH2, SEC16B, FAIM2 and SH2B1), and for each individual a “BMI-increasing-allele-score” was calculated by summing the number of BMI-increasing alleles across all 12 loci. Using this BMI-increasing-allele-score as an instrumental variable for BMI, each 1 kg/m2 increase in childhood BMI was predicted to result in a 6.5% (95% CI: 4.6–8.5%) higher absolute risk of early menarche (before age 12 years). While mendelian randomisation analysis is dependent on a number of assumptions, our findings support a causal effect of BMI on early menarche and suggests that increasing prevalence of childhood obesity will lead to similar trends in the prevalence of early menarche

    Variability in the Heritability of Body Mass Index: A Systematic Review and Meta-Regression

    Get PDF
    Evidence for a major role of genetic factors in the determination of body mass index (BMI) comes from studies of related individuals. Despite consistent evidence for a heritable component of BMI, estimates of BMI heritability vary widely between studies and the reasons for this remain unclear. While some variation is natural due to differences between populations and settings, study design factors may also explain some of the heterogeneity. We performed a systematic review that identified 88 independent estimates of BMI heritability from twin studies (total 140,525 twins) and 27 estimates from family studies (42,968 family members). BMI heritability estimates from twin studies ranged from 0.47 to 0.90 (5th/50th/95th centiles: 0.58/0.75/0.87) and were generally higher than those from family studies (range: 0.24–0.81; 5th/50th/95th centiles: 0.25/0.46/0.68). Meta-regression of the results from twin studies showed that BMI heritability estimates were 0.07 (P = 0.001) higher in children than in adults; estimates increased with mean age among childhood studies (+0.012/year, P = 0.002), but decreased with mean age in adult studies (−0.002/year, P = 0.002). Heritability estimates derived from AE twin models (which assume no contribution of shared environment) were 0.12 higher than those from ACE models (P < 0.001), whilst lower estimates were associated with self reported versus DNA-based determination of zygosity (−0.04, P = 0.02), and with self reported versus measured BMI (−0.05, P = 0.03). Although the observed differences in heritability according to aspects of study design are relatively small, together, the above factors explained 47% of the heterogeneity in estimates of BMI heritability from twin studies. In summary, while some variation in BMI heritability is expected due to population-level differences, study design factors explained nearly half the heterogeneity reported in twin studies. The genetic contribution to BMI appears to vary with age and may have a greater influence during childhood than adult life

    Partonometry in W + jet production

    Get PDF
    QCD predicts soft radiation patterns that are particularly simple for W+jetW+ {jet} production. We demonstrate how these patterns can be used to distinguish between the parton-level subprocesses probabilistically on an event-by-event basis. As a test of our method we demonstrate correlations between the soft radiation and the radiation inside the outgoing jet.Comment: LaTeX2e, style file include

    Life course variations in the associations between FTO and MC4R gene variants and body size

    Get PDF
    The timing of associations between common genetic variants for weight or body mass index (BMI) across the life course may provide insights into the aetiology of obesity. We genotyped variants in FTO (rs9939609) and near MC4R (rs17782313) in 1240 men and 1239 women born in 1946 and participating in the MRC National Survey of Health and Development. Birth weight was recorded and height and weight were measured or self-reported repeatedly at 11 time-points between ages 2 and 53 years. Hierarchical mixed models were used to test whether genetic associations with weight or BMI standard deviation scores (SDS) changed with age during childhood and adolescence (2–20 years) or adulthood (20–53 years). The association between FTO rs9939609 and BMI SDS strengthened during childhood and adolescence (rate of change: 0.007 SDS/A-allele/year; 95% CI: 0.003–0.010, P < 0.001), reached a peak strength at age 20 years (0.13 SDS/A-allele, 0.08–0.19), and then weakened during adulthood (−0.003 SDS/A-allele/year, −0.005 to −0.001, P = 0.001). MC4R rs17782313 showed stronger associations with weight than BMI; its association with weight strengthened during childhood and adolescence (0.005 SDS/C-allele/year; 0.001–0.008, P = 0.006), peaked at age 20 years (0.13 SDS/C-allele, 0.07–0.18), and weakened during adulthood (−0.002 SDS/C-allele/year, −0.004 to 0.000, P = 0.05). In conclusion, genetic variants in FTO and MC4R showed similar biphasic changes in their associations with BMI and weight, respectively, strengthening during childhood up to age 20 years and then weakening with increasing adult age. Studies of the aetiology of obesity spanning different age groups may identify age-specific determinants of weight gain
    corecore