70 research outputs found

    The eclipse of the V773 Tau B circumbinary disk

    Full text link
    A deep (~70%) and extended (~150 days) eclipse was seen towards the young multiple stellar system V773 Tau in 2010. We interpret it as due to the passage of a circumbinary disk around the B components moving in front of the A components. Our aim is to characterise the orientation and structure of the disk, to refine the orbits of the subcomponents, and to predict when the next eclipse will occur. We combine the photometry from several ground based surveys, construct a model for the light curve of the eclipse, and use high angular resolution imaging to refine the orbits of the three components of the system, A, B and C. Frequency analysis of the light curves, including from the TESS satellite, enables characterisation of the rotational periods of the Aa and Ab stars. A toy model of the circumbinary disk shows that it extends out to approximately 5 au around the B binary and has an inclination of 73 degrees with respect to the orbital plane of AB, where the lower bound of the radius of the disk is constrained by the geometry of the AB orbit and the upper bound is set by the stability of the disk. We identify several frequencies in the photometric data that we attribute to rotational modulation of the Aa and Ab stellar companions. We produce the first determination of the orbit of the more distant C component around the AB system and limit its inclination to 93 degrees. The high inclination and large diameter of the disk, together with the match from theory suggest that B is an almost equal mass, moderately eccentric binary. We identify the rotational periods of the Aa and Ab stars, identify a third frequency in the light curve that we attribute to the orbital period of the stars in the B binary. We predict that the next eclipse will be around 2037, during which both detailed photometric and spectroscopic monitoring will characterise the disk in greater detail.Comment: 13 pages, 15 figures, 5 tables, A&A in press. All data and reduction scripts available at https://github.com/mkenworthy/V773TauBdis

    A Comparison of Botulinum Toxin A and Intralesional Steroids for the Treatment of Plantar Fasciitis: A Randomized, Double- Blinded Study

    Get PDF
    Plantar fasciitis is the most frequent cause of chronic heel pain. This pathology generally presents in patients who are 40 years of age or older, overweight, sedentary, or engage in intense physical activity. 14,32 Because of its anatomic orientation and its tensile strength, the plantar fascia functions to prevent foot collapse. It is a piece of thick connective tissue that originates at the base of the calcaneus and extends distally to the phalanges. Stretching of the plantar fascia prevents the displacement of the calcaneus and the metatarsals and helps to maintain the medial longitudinal arch. The plantar fascia simulates a cable between the calcaneus and the metatarsophalangeal joints. The windlass mechanism described by Hicks 13 for the action of the plantar fascia explains that during dorsiflexion of the toes, the length of the plantar fascia is effectively shortened, causing an elevation of the arch. Extension of the toes increases the arc of tension with the metatarsophalangeal joints, similar to an axis or anchor point. Shortening of the plantar fascia that results from dorsiflexion of the hallux is the essence of the reel mechanism. When a complete fasciotomy is performed, this mechanism is lost, decreasing the stability of the arch and interfering with stability during the terminal stance phase. Methods: The patients were randomly divided into 2 groups according to the treatment received. The patients were evaluated over 6 months. The evaluation scores included the Visual Analog Scale (VAS), Maryland Foot and Ankle, Foot and Ankle Disability Index (FADI), and American Orthopaedic Foot and Ankle Society (AOFAS) score. Moreover, patients were instructed to perform plantar fascia stretching exercises over the course of the study. The final number of patients was 36, of whom 19 received BTX-A (10 men and 9 women) and 17 (6 men and 11 women) received steroids. Results: When compared to patients who received steroids, the patients who received BTX-A exhibited more rapid and sustained improvement over the duration of the study. Conclusion: A combination of BTX-A and plantar fascia stretching exercises yielded better results for the treatment of plantar fasciitis than intralesional steroids. Level of Evidence: Level I, therapeutic studies

    Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.MCIU - Nvidia(UMA18-FEDERJA-084

    Computational Approaches to Explainable Artificial Intelligence:Advances in Theory, Applications and Trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Computational approaches to Explainable Artificial Intelligence:Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.</p

    MCT Expression and Lactate Influx/Efflux in Tanycytes Involved in Glia-Neuron Metabolic Interaction

    Get PDF
    Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes

    Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    Get PDF
    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity &gt; 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI
    corecore