27 research outputs found

    Calibration-free in vitro quantification of protein homo-oligomerization using commercial instrumentation and free, open source brightness analysis software

    No full text
    Number and brightness is a calibration-free fluorescence fluctuation spectroscopy (FFS) technique for detecting protein homo-oligomerization. It can be employed using a conventional confocal microscope equipped with digital detectors. A protocol for the use of the technique in vitro is shown by means of a use case where number and brightness can be seen to accurately quantify the oligomeric state of mVenus-labelled FKBP12F36V before and after the addition of the dimerizing drug AP20187. The importance of using the correct microscope acquisition parameters and the correct data preprocessing and analysis methods are discussed. In particular, the importance of the choice of photobleaching correction is stressed. This inexpensive method can be employed to study protein-protein interactions in many biological contexts

    Calibration-free in vitro quantification of protein homo-oligomerization using commercial instrumentation and free, open source brightness analysis software

    No full text
    Number and brightness is a calibration-free fluorescence fluctuation spectroscopy (FFS) technique for detecting protein homo-oligomerization. It can be employed using a conventional confocal microscope equipped with digital detectors. A protocol for the use of the technique in vitro is shown by means of a use case where number and brightness can be seen to accurately quantify the oligomeric state of mVenus-labelled FKBP12F36V before and after the addition of the dimerizing drug AP20187. The importance of using the correct microscope acquisition parameters and the correct data preprocessing and analysis methods are discussed. In particular, the importance of the choice of photobleaching correction is stressed. This inexpensive method can be employed to study protein-protein interactions in many biological contexts

    nandb—number and brightness in R with a novel automatic detrending algorithm

    No full text
    An R package for performing number and brightness image analysis, with the implementation of a novel automatic detrending algorithm

    nandb—number and brightness in R with a novel automatic detrending algorithm

    No full text
    An R package for performing number and brightness image analysis, with the implementation of a novel automatic detrending algorithm

    Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins

    No full text
    Structural, biochemical and biophysical studies of eukaryotic soluble and membrane proteins require their production in milligram quantities. Although large-scale protein expression strategies based on transient or stable transfection of mammalian cells are well established, they are associated with high consumable costs, limited transfection efficiency or long and tedious selection of clonal cell lines. Lentiviral transduction is an efficient method for the delivery of transgenes to mammalian cells and unifies the ease of use and speed of transient transfection with the robust expression of stable cell lines. In this protocol, we describe the design and step-by-step application of a lentiviral plasmid suite, termed pHR-CMV-TetO2, for the constitutive or inducible large-scale production of soluble and membrane proteins in HEK293 cell lines. Optional features include bicistronic co-expression of fluorescent marker proteins for enrichment of co-transduced cells using cell sorting and of biotin ligase for in vivo biotinylation. We demonstrate the efficacy of the method for a set of soluble proteins and for the G-protein-coupled receptor (GPCR) Smoothened (SMO). We further compare this method with baculovirus transduction of mammalian cells (BacMam), using the type-A γ-aminobutyric acid receptor (GABAAR) β3 homopentamer as a test case. The protocols described here are optimized for simplicity, speed and affordability; lead to a stable polyclonal cell line and milligram-scale amounts of protein in 3–4 weeks; and routinely achieve an approximately three- to tenfold improvement in protein production yield per cell as compared to transient transduction or transfection

    Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins

    No full text
    Structural, biochemical and biophysical studies of eukaryotic soluble and membrane proteins require their production in milligram quantities. Although large-scale protein expression strategies based on transient or stable transfection of mammalian cells are well established, they are associated with high consumable costs, limited transfection efficiency or long and tedious selection of clonal cell lines. Lentiviral transduction is an efficient method for the delivery of transgenes to mammalian cells and unifies the ease of use and speed of transient transfection with the robust expression of stable cell lines. In this protocol, we describe the design and step-by-step application of a lentiviral plasmid suite, termed pHR-CMV-TetO2, for the constitutive or inducible large-scale production of soluble and membrane proteins in HEK293 cell lines. Optional features include bicistronic co-expression of fluorescent marker proteins for enrichment of co-transduced cells using cell sorting and of biotin ligase for in vivo biotinylation. We demonstrate the efficacy of the method for a set of soluble proteins and for the G-protein-coupled receptor (GPCR) Smoothened (SMO). We further compare this method with baculovirus transduction of mammalian cells (BacMam), using the type-A γ-aminobutyric acid receptor (GABAAR) β3 homopentamer as a test case. The protocols described here are optimized for simplicity, speed and affordability; lead to a stable polyclonal cell line and milligram-scale amounts of protein in 3–4 weeks; and routinely achieve an approximately three- to tenfold improvement in protein production yield per cell as compared to transient transduction or transfection

    Structural mechanism for modulation of synaptic neuroligin-neurexin signaling by MDGA proteins

    No full text
    Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicin-gmodulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation

    Structural mechanism for modulation of synaptic neuroligin-neurexin signaling by MDGA proteins

    No full text
    Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicin-gmodulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation

    Structural basis for integration of GluD receptors within synaptic organizer complexes

    No full text
    Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function

    Structural Mechanism for Modulation of Synaptic Neuroligin-Neurexin Signaling by MDGA Proteins.

    No full text
    (Neuron 95, 896–913; August 16, 2017) After publication, we noticed a number of minor errors within the main text and Figures 1 and 4 that escaped our attention during the proofreading of the manuscript. In the top left panel in Figure 1C, FnIII loop C'E is incorrectly labeled as CE. In the legend to Figure 3A, the buried surface area of Site II is incorrectly stated as 859 Å , while the correct value is 1,000 Å . In Figure 4B, residue Glu294 (E294) is incorrectly labeled as Asp294 (D294). This error is also present in the main text paragraph “MDGA and NRX Share Binding Interfaces on NL.” The errors have no effect on any of the conclusions in the paper, and the main text and Figures 1 and 4 have now been corrected online. The authors apologize for any confusion the errors may have caused. [formula presented] [formula presented]. 7 2
    corecore