18 research outputs found

    Specific Humoral Immunity versus Polyclonal B Cell Activation in Trypanosoma cruzi Infection of Susceptible and Resistant Mice

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 10–12 million people in Latin America. Patent parasitemia develops during acute disease. During this phase, polyclonal B cell activation has been reported to generate high levels of serum antibody with low parasite specificity, and delayed protective humoral immunity, which is necessary to prevent the host from succumbing to infection. In this manuscript, data show that relatively resistant mice have improved parasite-specific humoral immunity and decreased polyclonal B cell activation compared to susceptible mice. Parasite-specific humoral immunity was associated with differential expansion of B cell subsets and T cells in the spleen, as well as with increased Th1 and decreased Th2 cytokine production. These data suggest that host susceptibility/genetic biases impact the development of humoral responses to infection. Th2 cytokines are generally associated with improved antibody responses. In the context of T. cruzi infection of susceptible mice, Th2 cytokines were associated with increased total antibody production concomitant with delayed pathogen-specific humoral immunity. This study highlights the need to consider the effect of host biases when investigating humoral immunity to any pathogen that has reported polyclonal B cell activation during infection

    Opsonization of Toxoplasma gondii tachyzoites with nonspecific immunoglobulins promotes their phagocytosis by macrophages and inhibits their proliferation in nonphagocytic cells in tissue culture.

    No full text
    We have recently shown that Toxoplasma gondii tachyzoites grown in in vitro culture can bind unspecific immunoglobulin (Ig) through their Fc moiety. We show now that Fc receptors are also present on T. gondii within the host animal, and that intraperitoneal parasites in immunocompetent mice are saturated with unspecific Ig. We have also investigated the effect of the parasite's Fc receptor on the interaction of tachyzoites with mammalian cells, using the Vero cell line as a model for nonphagocytic host cells and murine peritoneal macrophages in primary culture as a model for phagocytic cells. Coating of tachyzoites with parasite-unrelated Ig did not enhance their invasive capacity in either target cell type, but slightly decreased the parasite proliferation. Moreover, phagocytosis by macrophages was increased by approximately 50% when parasites were coated with unspecific Ig. These results indicate that the Fc receptor on T. gondii affects the balance between invasion and phagocytosis in a way that is detrimental to the parasites.Comparative StudyJournal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Alteration of migration and maturation of dendritic cells and T-cell depletion in the course of experimental Trypanosoma cruzi infection.

    No full text
    Trypanosoma cruzi, the etiologic agent of Chagas disease, induces infection that affects most immunocompetent cells. However, its effect on dendritic cells (DC) is still unknown in vivo. In this report, we show, by immunohistochemical staining, that T. cruzi infection triggers a huge increase in the number of CD11c(+) DC in the spleen of infected mice at Days 14 and 21 post-inoculation (pi). In mice reaching the chronic phase (starting on Day 35 pi), the number of splenic DC (sDC) returned progressively to normal (ending on Day 98 pi). In the spleens of noninfected mice, most of the CD8alpha(+)CD11c(+) and CD8alpha(-)CD11c(+) DC were found in the red pulp and the marginal and T-cell zones. However, starting on Day 14 pi, a progressive decline of CD8alpha(+)CD11c(+) was observed. In addition, sDC expressed low levels of the costimulatory molecule B7.2 at Days 14 and 21 pi, suggesting that they remained immature in the course of the infection. As expected, in lipopolysaccharide-treated and noninfected mice, the expression of B7.2 molecules was sharply up-regulated on sDC that migrated toward the T-cell zone. In contrast, upon lipopolysaccharide stimulation, sDC from T. cruzi-infected mice did not migrate toward the T-cell zone nor did they undergo maturation. Finally, white pulp was severely depleted in both CD4(+) and CD8(+) T cells at the peak of infection. Taken together, these results indicate that profound alterations of migration and maturation of sDC and depletion/redistribution of T cells occur during the acute phase of T. cruzi infection and could be part of another strategy to escape immune surveillance and to persist in the host.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Maternal Trypanosoma cruzi Infection Upregulates Capacity of Uninfected Neonate Cells To Produce Pro- and Anti-Inflammatory Cytokines

    No full text
    The possibility of maternal in utero modulation of the innate and/or adaptive immune responses of uninfected newborns from Trypanosoma cruzi-infected mothers was investigated by studying the capacity of their whole blood cells to produce cytokines in response to T. cruzi lysate or lipopolysaccharide-plus-phytohemagglutinin (LPS-PHA) stimulation. Cells of such newborns occasionally released gamma interferon (IFN-γ) and no interleukin-2 (IL-2) and IL-4 upon specific stimulation, while their mothers responded by the production of IFN-γ, IL-2, and IL-4. Infection in mothers was also associated with a hyperactivation of maternal cells and also, strikingly, of cells of their uninfected neonates, since their release of proinflammatory (IL-1β, IL-6, and tumor necrosis factor alpha [TNF-α]) as well as of anti-inflammatory (IL-10 and soluble TNF receptor) cytokines or factors was upregulated in the presence of LPS-PHA and/or parasite lysate. These results show that T. cruzi infection in mothers induces profound perturbations in the cytokine response of their uninfected neonates. Such maternal influence on neonatal innate immunity might contribute to limit the occurrence and severity of congenital infection
    corecore