917 research outputs found

    Justice in Medicine

    Get PDF

    Magnetic and electric phase control in epitaxial EuTiO3_3 from first principles

    Full text link
    We propose a design strategy - based on the coupling of spins, optical phonons, and strain - for systems in which magnetic (electric) phase control can be achieved by an applied electric (magnetic) field. Using first-principles density-functional theory calculations, we present a realization of this strategy for the magnetic perovskite EuTiO3_3.Comment: Significantly revised for clarit

    Calculation of model Hamiltonian parameters for LaMnO_3 using maximally localized Wannier functions

    Full text link
    Maximally localized Wannier functions (MLWFs) based on Kohn-Sham band-structures provide a systematic way to construct realistic, materials specific tight-binding models for further theoretical analysis. Here, we construct MLWFs for the Mn e_g bands in LaMnO_3, and we monitor changes in the MLWF matrix elements induced by different magnetic configurations and structural distortions. From this we obtain values for the local Jahn-Teller and Hund's rule coupling strength, the hopping amplitudes between all nearest and further neighbors, and the corresponding reduction due to the GdFeO_3-type distortion. By comparing our results with commonly used model Hamiltonians for manganites, where electrons can hop between two "e_g-like" orbitals located on each Mn site, we find that the most crucial limitation of such models stems from neglecting changes in the underlying Mn(d)-O(p) hybridization.Comment: 15 pages, 11 figures, 3 table

    Structural distortions and model Hamiltonian parameters: from LSDA to a tight-binding description of LaMnO_3

    Full text link
    The physics of manganites is often described within an effective two-band tight-binding (TB) model for the Mn e_g electrons, which apart from the kinetic energy includes also a local "Hund's rule" coupling to the t_{2g} core spin and a local coupling to the Jahn-Teller (JT) distortion of the oxygen octahedra. We test the validity of this model by comparing the energy dispersion calculated for the TB model with the full Kohn-Sham band-structure calculated within the local spin-density approximation (LSDA) to density functional theory. We analyze the effect of magnetic order, JT distortions, and "GdFeO_3-type" tilt-rotations of the oxygen octahedra. We show that the hopping amplitudes are independent of magnetic order and JT distortions, and that both effects can be described with a consistent set of model parameters if hopping between both nearest and next-nearest neighbors is taken into account. We determine a full set of model parameters from the density functional theory calculations, and we show that both JT distortions and Hund's rule coupling are required to obtain an insulating ground state within LSDA. Furthermore, our calculations show that the "GdFeO_3-type" rotations of the oxygen octahedra lead to a substantial reduction of the hopping amplitudes but to no significant deviation from the simple TB model.Comment: replaced with final (published) version with improved presentatio

    Tri-layer superlattices: A route to magnetoelectric multiferroics?

    Full text link
    We explore computationally the formation of tri-layer superlattices as an alternative approach for combining ferroelectricity with magnetism to form magnetoelectric multiferroics. We find that the contribution to the superlattice polarization from tri-layering is small compared to typical polarizations in conventionalferroelectrics, and the switchable ferroelectric component is negligible. In contrast, we show that epitaxial strain and ``negative pressure'' can yield large, switchable polarizations that are compatible with the coexistence of magnetism, even in materials with no active ferroelectric ions.Comment: 10 pages, 3 figures; references added, and minor editorial changes mad

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3

    Full text link
    In this article we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can "switch on" the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization M is coupled to the polarization P via a trilinear free energy contribution of the form P(M x L), where L is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue on Multiferroic

    First principles study of the multiferroics BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}: Structure, polarization, and magnetic ordering temperature

    Full text link
    We present results of an {\it ab initio} density functional theory study of three bismuth-based multiferroics, BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}. We disuss differences in the crystal and electronic structure of the three systems, and we show that the application of the LDA+UU method is essential to obtain realistic structural parameters for Bi2_{2}FeCrO6_{6}. We calculate the magnetic nearest neighbor coupling constants for all three systems and show how Anderson's theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.Comment: 8 Pages, 4 Figure

    Soft x-ray spectroscopy measurements of the p-like density of states of B in MgB2 and evidence for surface boron oxides on exposed surfaces

    Full text link
    Soft X-ray absorption and fluorescence measurements are reported for the K-edge of B in MgB2. The measurements confirm a high density of B pxy(sigma)-states at the Fermi edge and extending to approximately 0.9 eV above the edge. A strong resonance is observed in elastic scattering through a core-exciton derived from out-of-plane pz(pi*)-states. Another strong resonance, observed in both elastic and inelastic spectra, is identified as a product of surface boron oxides.Comment: 7 pages total, 4 figures, submitted to Phys. Rev. Let

    Origin of ferroelectricity in the multiferroic barium fluorides BaMF4

    Full text link
    We present a first principles study of the series of multiferroic barium fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss trends in the structural, electronic, and magnetic properties, and we show that the ferroelectricity in these systems results from the "freezing in" of a single unstable polar phonon mode. In contrast to the case of the standard perovskite ferroelectrics, this structural distortion is not accompanied by charge transfer between cations and anions. Thus, the ferroelectric instability in the multiferroic barium fluorides arises solely due to size effects and the special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table
    corecore