1,544 research outputs found

    Gαq and its \u3ci\u3eAkt\u3c/i\u3eions

    Get PDF
    No abstract available

    J.D. Eckhart to Mr. Meredith (9 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_anti/1148/thumbnail.jp

    LOKALANÄSTHESIEREND WIRKSAME KOTARNINDERIVATE

    Get PDF

    Beta-Adrenergic gene therapy for cardiovascular disease

    Get PDF
    Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct), acting as a G(βγ)-β-adrenergic receptor kinase (βARK)1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of G(βγ) via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies

    High Spatial Resolution Thermal-Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC

    Full text link
    We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer (LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V primary is joined by two co-orbiting brown dwarfs. By combining the age of the system with the dynamical masses and luminosities of the substellar companions, we can test evolutionary models of cool brown dwarfs and extra-solar giant planets. Previous near-infrared studies suggest a disagreement between HD 130948BC luminosities and those derived from evolutionary models. We obtained spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to extend the wavelength coverage into the thermal infrared. Jointly using JHK photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric parameters that are consistent with parameters derived from evolutionary models. We leverage the consistency of these atmospheric quantities to favor a younger age (0.50 \pm 0.07 Gyr) of the system compared to the older age (0.79 \pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity discrepancy.Comment: 17 pages, 9 figures, Accepted to Ap

    The TRENDS High-Contrast Imaging Survey. VII. Discovery of a Nearby Sirius-like White Dwarf System (HD 169889)

    Get PDF
    Monitoring the long-term radial velocity (RV) and acceleration of nearby stars has proven an effective method for directly detecting binary and substellar companions. Some fraction of nearby RV trend systems are expected to be comprised of compact objects that likewise induce a systemic Doppler signal. In this paper, we report the discovery of a white dwarf companion found to orbit the nearby (π=28.297±0.066\pi = 28.297 \pm 0.066 mas) G9 V star HD 169889. High-contrast imaging observations using NIRC2 at Keck and LMIRCam at the LBT uncover the (ΔH=9.76±0.16\Delta H = 9.76 \pm 0.16, ΔL=9.60±0.03\Delta L' = 9.60 \pm 0.03) companion at an angular separation of 0.8'' (28 au). Thirteen years of precise Doppler observations reveal a steep linear acceleration in RV time series and place a dynamical constraint on the companion mass of M0.369±0.010MM \geq 0.369 \pm 0.010 M_{\odot}. This "Sirius-like" system adds to the census of white dwarf companions suspected to be missing in the solar neighborhood.Comment: Accepted to Ap

    Imaging protoplanets: observing transition disks with non-redundant masking

    Get PDF
    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.Comment: SPIE conference proceedin
    corecore