8,328 research outputs found

    Stochastic theory of spin-transfer oscillator linewidths

    Full text link
    We present a stochastic theory of linewidths for magnetization oscillations in spin-valve structures driven by spin-polarized currents. Starting from a nonlinear oscillator model derived from spin-wave theory, we derive Langevin equations for amplitude and phase fluctuations due to the presence of thermal noise. We find that the spectral linewidths are inversely proportional to the spin-wave intensities with a lower bound that is determined purely by modulations in the oscillation frequencies. Reasonable quantitative agreement with recent experimental results from spin-valve nanopillars is demonstrated.Comment: Submitted to Physical Review

    Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2

    Full text link
    Using two approaches: dispersion relations and isobar model, we have analyzed recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta electroproduction on protons, and the longitudinally polarized electron beam asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi electroproduction and S11(1535) to \eta electroproduction are found. The results obtained in the two approaches are in good agreement with each other. There is also good agreement between amplitudes of the \gamma^* N \to S11(1535) transition found in \pi and \eta electroproduction. For the first time accurate results are obtained for the longitudinal amplitudes of the P11(1440), D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure

    Effects of Noise on Ecological Invasion Processes: Bacteriophage-mediated Competition in Bacteria

    Full text link
    Pathogen-mediated competition, through which an invasive species carrying and transmitting a pathogen can be a superior competitor to a more vulnerable resident species, is one of the principle driving forces influencing biodiversity in nature. Using an experimental system of bacteriophage-mediated competition in bacterial populations and a deterministic model, we have shown in [Joo et al 2005] that the competitive advantage conferred by the phage depends only on the relative phage pathology and is independent of the initial phage concentration and other phage and host parameters such as the infection-causing contact rate, the spontaneous and infection-induced lysis rates, and the phage burst size. Here we investigate the effects of stochastic fluctuations on bacterial invasion facilitated by bacteriophage, and examine the validity of the deterministic approach. We use both numerical and analytical methods of stochastic processes to identify the source of noise and assess its magnitude. We show that the conclusions obtained from the deterministic model are robust against stochastic fluctuations, yet deviations become prominently large when the phage are more pathological to the invading bacterial strain.Comment: 39 pages, 7 figure

    Probing the nucleon structure with CLAS

    Full text link
    An overview of recent results with CLAS is presented with emphasis on nucleon resonance studies, nucleon spin structure, and generalized parton distributions.Comment: Plenary talk presented at NSTAR 2007, Bonn, German
    • …
    corecore