18,346 research outputs found

    Intrinsic-Density Functionals

    Get PDF
    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals.Comment: 15 page

    Quasielastic neutrino scattering from oxygen and the atmospheric neutrino problem

    Get PDF
    We examine several phenomena beyond the scope of Fermi-gas models that affect the quasielastic scattering (from oxygen) of neutrinos in the 0.1 -- 3.0 GeV range. These include Coulomb interactions of outgoing protons and leptons, a realistic finite-volume mean field, and the residual nucleon-nucleon interaction. None of these effects are accurately represented in the Monte Carlo simulations used to predict event rates due to μ\mu and ee neutrinos from cosmic-ray collisions in the atmosphere. We nevertheless conclude that the neglected physics cannot account for the anomalous μ\mu to ee ratio observed at Kamiokande and IMB, and is unlikely to change absolute event rates by more than 10--15\%. We briefly mention other phenomena, still to be investigated in detail, that may produce larger changes.Comment: In Revtex version 2. 14 pages, 3 figures (available on request from J. Engel, tel. 302-831-4354, [email protected]

    Model-independent assessment of current direct searches for spin-dependent dark matter

    Full text link
    I evaluate the current results of spin-dependent weakly interacting massive particle (WIMP) searches within a model-independent framework, showing the most restrictive limits to date derive from the combination of xenon and sodium iodide experiments. The extension of this analysis to the case of positive signal experiments is elaborated.Comment: 4 pages, 4 figures, revised and accepted for publication on Phys. Rev. Let

    Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit

    Full text link
    Let Γ\Gamma denote the space of all locally finite subsets (configurations) in Rd\mathbb R^d. A stochastic dynamics of binary jumps in continuum is a Markov process on Γ\Gamma in which pairs of particles simultaneously hop over Rd\mathbb R^d. We discuss a non-equilibrium dynamics of binary jumps. We prove the existence of an evolution of correlation functions on a finite time interval. We also show that a Vlasov-type mesoscopic scaling for such a dynamics leads to a generalized Boltzmann non-linear equation for the particle density

    Correlations between hidden units in multilayer neural networks and replica symmetry breaking

    Full text link
    We consider feed-forward neural networks with one hidden layer, tree architecture and a fixed hidden-to-output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distributions determine the probability for finding a specific activation pattern of the hidden units as well as the corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.

    On the violation of a local form of the Lieb-Oxford bound

    Full text link
    In the framework of density-functional theory, several popular density functionals for exchange and correlation have been constructed to satisfy a local form of the Lieb-Oxford bound. In its original global expression, the bound represents a rigorous lower limit for the indirect Coulomb interaction energy. Here we employ exact-exchange calculations for the G2 test set to show that the local form of the bound is violated in an extensive range of both the dimensionless gradient and the average electron density. Hence, the results demonstrate the severity in the usage of the local form of the bound in functional development. On the other hand, our results suggest alternative ways to construct accurate density functionals for the exchange energy.Comment: (Submitted on 27 April 2012

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Plasmodium falciparum glutamate dehydrogenase a is dispensable and not a drug target during erythrocytic development

    Get PDF
    <p>Background: Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target.</p> <p>Methods: The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated.</p> <p>Results: No growth defect under low and elevated oxygen tension, no up-or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10(Delta gdha) parasite lines. Further, the fate of the carbon skeleton of [(13)C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of a-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites.</p> <p>Conclusions: First, the data support the conclusion that D10(Delta gdha) parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.</p&gt
    corecore