228 research outputs found

    How to entrain a selected neuronal rhythm but not others: open-loop dithered brain stimulation for selective entrainment

    Get PDF
    Objective. While brain stimulation therapies such as deep brain stimulation for Parkinson's disease (PD) can be effective, they have yet to reach their full potential across neurological disorders. Entraining neuronal rhythms using rhythmic brain stimulation has been suggested as a new therapeutic mechanism to restore neurotypical behaviour in conditions such as chronic pain, depression, and Alzheimer's disease. However, theoretical and experimental evidence indicate that brain stimulation can also entrain neuronal rhythms at sub- and super-harmonics, far from the stimulation frequency. Crucially, these counterintuitive effects could be harmful to patients, for example by triggering debilitating involuntary movements in PD. We therefore seek a principled approach to selectively promote rhythms close to the stimulation frequency, while avoiding potential harmful effects by preventing entrainment at sub- and super-harmonics. Approach. Our open-loop approach to selective entrainment, dithered stimulation, consists in adding white noise to the stimulation period. Main results. We theoretically establish the ability of dithered stimulation to selectively entrain a given brain rhythm, and verify its efficacy in simulations of uncoupled neural oscillators, and networks of coupled neural oscillators. Furthermore, we show that dithered stimulation can be implemented in neurostimulators with limited capabilities by toggling within a finite set of stimulation frequencies. Significance. Likely implementable across a variety of existing brain stimulation devices, dithering-based selective entrainment has potential to enable new brain stimulation therapies, as well as new neuroscientific research exploiting its ability to modulate higher-order entrainment

    When do Bursts Matter in the Primary Motor Cortex? Investigating Changes in the Intermittencies of Beta Rhythms Associated With Movement States

    Get PDF
    Brain activity exhibits significant temporal structure that is not well captured in the power spectrum. Recently, attention has shifted to characterising the properties of intermittencies in rhythmic neural activity (i.e. bursts), yet the mechanisms regulating them are unknown. Here, we present evidence from electrocorticography recordings made from the motor cortex to show that the statistics of bursts, such as duration or amplitude, in beta frequency (14-30Hz) rhythms significantly aid the classification of motor states such as rest, movement preparation, execution, and imagery. These features reflect nonlinearities not detectable in the power spectrum, with states increasing in nonlinearity from movement execution to preparation to rest. Further, we show using a computational model of the cortical microcircuit, constrained to account for burst features, that modulations of laminar specific inhibitory interneurons are responsible for temporal organization of activity. Finally, we show that temporal characteristics of spontaneous activity can be used to infer the balance of cortical integration between incoming sensory information and endogenous activity. Critically, we contribute to the understanding of how transient brain rhythms may underwrite cortical processing, which in turn, could inform novel approaches for brain state classification, and modulation with novel brain-computer interfaces

    Sub-wavelength surface IR imaging of soft-condensed matter

    Full text link
    Outlined here is a technique for sub-wavelength infrared surface imaging performed using a phase matched optical parametric oscillator laser and an atomic force microscope as the detection mechanism. The technique uses a novel surface excitation illumination approach to perform simultaneously chemical mapping and AFM topography imaging with an image resolution of 200 nm. This method was demonstrated by imaging polystyrene micro-structures

    Forbidden Induced Subgraphs and the Price of Connectivity for Feedback Vertex Set

    Full text link

    Radio spectral properties and jet duty cycle in the restarted radio galaxy 3C388

    Get PDF
    © ESO 2020. The original publication is available at https://doi.org/10.1051/0004-6361/202037457.Context. Restarted radio galaxies represent a unique tool for investigating the duty cycle of the jet activity in active galactic nuclei (AGN). The radio galaxy 3C388 has long been claimed to be a peculiar example of an AGN with multi-epoch activity because it shows a very sharp discontinuity in the GHz spectral index distribution of its lobes. Aims. We present here for the first time a spatially resolved study of the radio spectrum of 3C388 down to MHz frequencies aimed at investigating the radiative age of the source and constraining its duty cycle. Methods. We used new low-frequency observations at 144 MHz performed with the Low Frequency Array and at 350 MHz performed with the Very Large Array that we combined with archival data at higher frequencies (614, 1400, and 4850 MHz). Results. We find that the spectral indices in the lower frequency range, 144-614 MHz, have flatter values (αlow ∼0.55-1.14) than those observed in the higher frequency range, 1400-4850 MHz, (αhigh ∼0.75-1.57), but they follow the same distribution across the lobes, with a systematic steepening towards the edges. However, the spectral shape throughout the source is not uniform and often deviates from standard models. This suggests that mixing of different particle populations occurs, although it remains difficult to understand whether this is caused by observational limitations (insufficient spatial resolution and/or projection effects) or by the intrinsic presence of multiple particle populations, which might be related to the two different outbursts. Conclusions. Using single-injection radiative models, we compute that the total source age is ≲ 80 Myr and that the duty cycle is about ton/ttot ∼ 60%, which is enough to prevent the intracluster medium from cooling, according to X-ray estimates. While to date the radio spectral distribution of 3C388 remains a rare case among radio galaxies, multi-frequency surveys performed with new-generation instruments will soon allow us to investigate whether more sources with the same characteristics exist.Peer reviewe

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    VizieR Online Data Catalog: 3C388 145, 392, 614, 1400 and 4850MHz images (Brienza+, 2020)

    Get PDF
    We used a recent dataset obtained on June 26th, 2019, as part of the LOFAR Two-metre Sky Survey (LoTSS, see Shimwell et al., 2019A&A...622A...1S, Cat. J/A+A/622/A1). We observed the source with the Very Large Array (VLA) in A configuration on July 28th 2015 using the P-band receiver centered at 350MHz. We reprocessed the data used by Roettiger et al. (1994ApJ...421L..23R) at 1400MHz and 4850MHz. The data consists of observations in B array at 1400MHz and in C array at 4850MHz. The target was observed for 7 hours at 1400MHz and for 5 hours at 4850MHz. The target was observed with the legacy Giant Metrewave Radio Telescope (GMRT) at 614MHz and 240MHz in dual frequency mode and data were published in Lal et al. (2008MNRAS.390.1105L). The observations were performed on July 29th and 30th, 2005. 3C388 was observed by Chandra on February 9th and 29th, 2004 with the ACIS-I detector (obs ID 4756 and 5295, respectively) and the data were published by Kraft et al. (2006ApJ...639..753K). (2 data files)

    Characterization of conductive polyprrole coated wool yarns

    Full text link
    Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn. <br /
    • …
    corecore