479 research outputs found

    Modeling Hybrid Stars

    Full text link
    We study the so called hybrid stars, which are hadronic stars that contain a core of deconfined quarks. For this purpose, we make use of an extended version of the SU(3) chiral model. Within this approach, the degrees of freedom change naturally from hadrons (baryon octet) to quarks (u, d, s) as the temperature and/or density increases. At zero temperature we are still able to reproduce massive stars, even with the inclusion of hyperons.Comment: To appear in the proceedings of Conference C12-08-0

    Stability windows for proto-quark stars

    Full text link
    We investigate the existence of possible stable strange matter and related stability windows at finite temperature for different models that are generally applied to describe quark stars, namely, the quark-mass density dependent model, the MIT bag model and the Nambu-Jona-Lasinio model. We emphasize that, although the limits for stable strange matter depend on a comparison with the ground state of 56Fe, which is a zero temperature state, the quantity that has to be used in the search for strange matter in proto-quark stars is the free energy and we analyze stability windows up to temperatures of the order of 40 MeV. The effects of strong magnetic fields on stability windows are computed and the resulting mass-radius relations for different stages of the proto-quark star are analyzed.Comment: Published versio

    The application of the Quark-Hadron Chiral Parity-Doublet Model to neutron star matter

    Full text link
    The Quark-Hadron Chiral Parity-Doublet model (Qχ\chiP) is applied to calculate compact star properties in the presence of a deconfinement phase transition. Within this model, a consistent description of nuclear matter properties, chiral symmetry restoration, and a transition from hadronic to quark and gluonic degrees of freedom is possible within one unified approach. We find that the equation of state obtained is consistent with recent perturbative quantum chromodynamics (QCD) results and is able to accommodate observational constraints of massive and small neutron stars. Furthermore, we show that important features of the equation of state, such as the symmetry energy and its slope, are well within their observational constraints.Comment: 8 pages, 9 figures and 1 tabl

    Properties and Stability of Hybrid Stars

    Full text link
    We discuss the properties of neutron stars and their modifications due to the occurrence of hyperons and quarks in the core of the star. More specifically, we consider the general problem of exotic particles inside compact stars in light of the observed two-solar mass pulsar. In addition, we investigate neutron star cooling and a possible explanation of the recently measured cooling curve of the neutron star in the supernova remnant Cas A.Comment: Contribution to SQM 2011 in Krak\'o

    Hybrid Stars in an SU(3) Parity Doublet Model

    Full text link
    We apply an extended version of the SU(3) parity model, containing quark degrees of freedom, to study neutron stars. The model successfully reproduces the main thermodynamic features of QCD which allows us to describe the composition of dense matter. Chiral symmetry restoration is realized inside the star and the chiral partners of the baryons appear, their masses becoming degenerate. Furthermore, quark degrees of freedom appear in a transition to a deconfined state. Performing an investigation of the macroscopic properties of neutron stars, we show that observational constraints, like mass and thermal evolution, are satisfied and new predictions can be made
    • …
    corecore