7,795 research outputs found

    Four Zero Texture Fermion Mass Matrices in SO(10) GUT

    Full text link
    We attempt the integration of the phenomenologically successful four zero texture of fermion mass matrices with the renormalizable SO(10) GUT. The resulting scenario is found to be highly predictive. Firstly, we examine the phenomenological implications of a class of the lepton mass matrices with parallel texture structures and obtain interesting constraints on the parameters of the charged lepton and the neutrino mass matrices. We combine these phenomenological constraints with the constraints obtained from SO(10) GUT to reduce the number of the free parameters and to further constrain the allowed ranges of the free parameters. The solar/atmospheric mixing angles obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl

    Band Structure of the Fractional Quantum Hall Effect

    Full text link
    The eigenstates of interacting electrons in the fractional quantum Hall phase typically form fairly well defined bands in the energy space. We show that the composite fermion theory gives insight into the origin of these bands and provides an accurate and complete microscopic description of the strongly correlated many-body states in the low-energy bands. Thus, somewhat like in Landau's fermi liquid theory, there is a one-to-one correspondence between the low energy Hilbert space of strongly interacting electrons in the fractinal quantum Hall regime and that of weakly interacting electrons in the integer quantum Hall regime.Comment: 10 page

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    X-ray standing wave and reflectometric characterization of multilayer structures

    Get PDF
    Microstructural characterization of synthetic periodic multilayers by x-ray standing waves have been presented. It has been shown that the analysis of multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW) techniques can overcome the deficiencies of the individual techniques in microstructural analysis. While interface roughnesses are more accurately determined by the XRR technique, layer composition is more accurately determined by the XSW technique where an element is directly identified by its characteristic emission. These aspects have been explained with an example of a 20 period Pt/C multilayer. The composition of the C-layers due to Pt dissolution in the C-layers, Ptx_{x}C1x_{1-x}, has been determined by the XSW technique. In the XSW analysis when the whole amount of Pt present in the C-layers is assumed to be within the broadened interface, it l eads to larger interface roughness values, inconsistent with those determined by the XRR technique. Constraining the interface roughness values to those determined by the XRR technique, requires an additional amount of dissolved Pt in the C-layers to expl ain the Pt fluorescence yield excited by the standing wave field. This analysis provides the average composition Ptx_{x}C1x_{1-x} of the C-layers .Comment: 12 pages RevTex, 10 eps figures embedde

    Nanodot to Nanowire: A strain-driven shape transition in self-organized endotaxial CoSi2 on Si (100)

    Full text link
    We report a phenomenon of strain-driven shape transition in the growth of nanoscale self-organized endotaxial CoSi2 islands on Si (100) substrates. Small square shaped islands as small as 15\times15 nm2 have been observed. Islands grow in the square shape following the four fold symmetry of the Si (100) substrate, up to a critical size of 67 \times 67 nm2. A shape transition takes place at this critical size. Larger islands adopt a rectangular shape with ever increasing length and the width decreasing to an asymptotic value of ~25 nm. This produces long wires of nearly constant width.We have observed nanowire islands with aspect ratios as large as ~ 20:1. The long nanowire heterostructures grow partly above (~ 3 nm) the surface, but mostly into (~17 nm) the Si substrate. These self-organized nanostructures behave as nanoscale Schottky diodes. They may be useful in Si-nanofabrication and find potential application in constructing nano devices.Comment: 9 pages, 7 figure

    Analytic Coulomb matrix elements in the lowest Landau level in disk geometry

    Full text link
    Using Darling's theorem on products of generalized hypergeometric series an analytic expression is obtained for the Coulomb matrix elements in the lowest Landau level in the representation of angular momentum. The result is important in the studies of Fractional Quantum Hall effect (FQHE) in disk geometry. Matrix elements are expressed as simple finite sums of positive terms, eliminating the need to approximate these quantities with slowly-convergent series. As a by-product, an analytic representation for certain integals of products of Laguerre polynomials is obtained.Comment: Accepted to J. Math. Phys.; 3 pages revtex, no figure

    The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas

    Full text link
    Based on quantum statistical mechanics we show that the SU(3)SU(3) color singlet ensemble of a quark-gluon gas exhibits a Z(3)Z(3) symmetry through the normaized character in fundamental representation and also becomes equivalent, within a stationary point approximation, to the ensemble given by Polyakov Loop. Also Polyakov Loop gauge potential is obtained by considering spatial gluons along with the invariant Haar measure at each space point. The probability of the normalized character in SU(3)SU(3) vis-a-vis Polyakov Loop is found to be maximum at a particular value exhibiting a strong color correlation. This clearly indicates a transition from a color correlated to uncorrelated phase or vise-versa. When quarks are included to the gauge fields, a metastable state appears in the temperature range 145T(MeV)170145\le T({\rm{MeV}}) \le 170 due to the explicit Z(3)Z(3) symmetry breaking in the quark-gluon system. Beyond T170T\ge 170 MeV the metastable state disappears and stable domains appear. At low temperature a dynamical recombination of ionized Z(3)Z(3) color charges to a color singlet Z(3)Z(3) confined phase is evident along with a confining background that originates due to circulation of two virtual spatial gluons but with conjugate Z(3)Z(3) phases in a closed loop. We also discuss other possible consequences of the center domains in the color deconfined phase at high temperature.Comment: Version published in J. Phys.

    The detection of patients at risk of gastrointestinal toxicity during pelvic radiotherapy by electronic nose and FAIMS : a pilot study

    Get PDF
    It is well known that the electronic nose can be used to identify differences between human health and disease for a range of disorders. We present a pilot study to investigate if the electronic nose and a newer technology, FAIMS (Field Asymmetric Ion Mobility Spectrometry), can be used to identify and help inform the treatment pathway for patients receiving pelvic radiotherapy, which frequently causes gastrointestinal side-effects, severe in some. From a larger group, 23 radiotherapy patients were selected where half had the highest levels of toxicity and the others the lowest. Stool samples were obtained before and four weeks after radiotherapy and the volatiles and gases emitted analysed by both methods; these chemicals are products of fermentation caused by gut microflora. Principal component analysis of the electronic nose data and wavelet transform followed by Fisher discriminant analysis of FAIMS data indicated that it was possible to separate patients after treatment by their toxicity levels. More interestingly, differences were also identified in their pre-treatment samples. We believe these patterns arise from differences in gut microflora where some combinations of bacteria result to give this olfactory signature. In the future our approach may result in a technique that will help identify patients at “high risk” even before radiation treatment is started
    corecore