7,795 research outputs found
Four Zero Texture Fermion Mass Matrices in SO(10) GUT
We attempt the integration of the phenomenologically successful four zero
texture of fermion mass matrices with the renormalizable SO(10) GUT. The
resulting scenario is found to be highly predictive. Firstly, we examine the
phenomenological implications of a class of the lepton mass matrices with
parallel texture structures and obtain interesting constraints on the
parameters of the charged lepton and the neutrino mass matrices. We combine
these phenomenological constraints with the constraints obtained from SO(10)
GUT to reduce the number of the free parameters and to further constrain the
allowed ranges of the free parameters. The solar/atmospheric mixing angles
obtained in this analysis are in fairly good agreement with the data.Comment: 14 pages, 3 figures, 1 tabl
Band Structure of the Fractional Quantum Hall Effect
The eigenstates of interacting electrons in the fractional quantum Hall phase
typically form fairly well defined bands in the energy space. We show that the
composite fermion theory gives insight into the origin of these bands and
provides an accurate and complete microscopic description of the strongly
correlated many-body states in the low-energy bands. Thus, somewhat like in
Landau's fermi liquid theory, there is a one-to-one correspondence between the
low energy Hilbert space of strongly interacting electrons in the fractinal
quantum Hall regime and that of weakly interacting electrons in the integer
quantum Hall regime.Comment: 10 page
Replicating Nanostructures on Silicon by Low Energy Ion Beams
We report on a nanoscale patterning method on Si substrates using
self-assembled metal islands and low-energy ion-beam irradiation. The Si
nanostructures produced on the Si substrate have a one-to-one correspondence
with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the
substrate. The surface morphology and the structure of the irradiated surface
were studied by high-resolution transmission electron microscopy (HRTEM). TEM
images of ion-beam irradiated samples show the formation of sawtooth-like
structures on Si. Removing metal islands and the ion-beam induced amorphous Si
by etching, we obtain a crystalline nanostructure of Si. The smallest
structures emit red light when exposed to a UV light. The size of the
nanostructures on Si is governed by the size of the self-assembled metal
nanoparticles grown on the substrate for this replica nanopatterning. The
method can easily be extended for tuning the size of the Si nanostructures by
the proper choice of the metal nanoparticles and the ion energy in
ion-irradiation. It is suggested that off-normal irradiation can also be used
for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog
School-based Understanding of Human Rights in Four Countries: A Commonwealth Study
Teaching/Communication/Extension/Profession,
X-ray standing wave and reflectometric characterization of multilayer structures
Microstructural characterization of synthetic periodic multilayers by x-ray
standing waves have been presented. It has been shown that the analysis of
multilayers by combined x-ray reflectometry (XRR) and x-ray standing wave (XSW)
techniques can overcome the deficiencies of the individual techniques in
microstructural analysis. While interface roughnesses are more accurately
determined by the XRR technique, layer composition is more accurately
determined by the XSW technique where an element is directly identified by its
characteristic emission. These aspects have been explained with an example of a
20 period Pt/C multilayer. The composition of the C-layers due to Pt
dissolution in the C-layers, PtC, has been determined by the XSW
technique. In the XSW analysis when the whole amount of Pt present in the
C-layers is assumed to be within the broadened interface, it l eads to larger
interface roughness values, inconsistent with those determined by the XRR
technique. Constraining the interface roughness values to those determined by
the XRR technique, requires an additional amount of dissolved Pt in the
C-layers to expl ain the Pt fluorescence yield excited by the standing wave
field. This analysis provides the average composition PtC of the
C-layers .Comment: 12 pages RevTex, 10 eps figures embedde
Nanodot to Nanowire: A strain-driven shape transition in self-organized endotaxial CoSi2 on Si (100)
We report a phenomenon of strain-driven shape transition in the growth of
nanoscale self-organized endotaxial CoSi2 islands on Si (100) substrates. Small
square shaped islands as small as 15\times15 nm2 have been observed. Islands
grow in the square shape following the four fold symmetry of the Si (100)
substrate, up to a critical size of 67 \times 67 nm2. A shape transition takes
place at this critical size. Larger islands adopt a rectangular shape with ever
increasing length and the width decreasing to an asymptotic value of ~25 nm.
This produces long wires of nearly constant width.We have observed nanowire
islands with aspect ratios as large as ~ 20:1. The long nanowire
heterostructures grow partly above (~ 3 nm) the surface, but mostly into (~17
nm) the Si substrate. These self-organized nanostructures behave as nanoscale
Schottky diodes. They may be useful in Si-nanofabrication and find potential
application in constructing nano devices.Comment: 9 pages, 7 figure
Analytic Coulomb matrix elements in the lowest Landau level in disk geometry
Using Darling's theorem on products of generalized hypergeometric series an
analytic expression is obtained for the Coulomb matrix elements in the lowest
Landau level in the representation of angular momentum. The result is important
in the studies of Fractional Quantum Hall effect (FQHE) in disk geometry.
Matrix elements are expressed as simple finite sums of positive terms,
eliminating the need to approximate these quantities with slowly-convergent
series. As a by-product, an analytic representation for certain integals of
products of Laguerre polynomials is obtained.Comment: Accepted to J. Math. Phys.; 3 pages revtex, no figure
The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on a quark-gluon gas
Based on quantum statistical mechanics we show that the color singlet
ensemble of a quark-gluon gas exhibits a symmetry through the normaized
character in fundamental representation and also becomes equivalent, within a
stationary point approximation, to the ensemble given by Polyakov Loop. Also
Polyakov Loop gauge potential is obtained by considering spatial gluons along
with the invariant Haar measure at each space point. The probability of the
normalized character in vis-a-vis Polyakov Loop is found to be maximum
at a particular value exhibiting a strong color correlation. This clearly
indicates a transition from a color correlated to uncorrelated phase or
vise-versa. When quarks are included to the gauge fields, a metastable state
appears in the temperature range due to the
explicit symmetry breaking in the quark-gluon system. Beyond
MeV the metastable state disappears and stable domains appear. At low
temperature a dynamical recombination of ionized color charges to a
color singlet confined phase is evident along with a confining
background that originates due to circulation of two virtual spatial gluons but
with conjugate phases in a closed loop. We also discuss other possible
consequences of the center domains in the color deconfined phase at high
temperature.Comment: Version published in J. Phys.
The detection of patients at risk of gastrointestinal toxicity during pelvic radiotherapy by electronic nose and FAIMS : a pilot study
It is well known that the electronic nose can be used to identify differences between human health and disease for a range of disorders. We present a pilot study to investigate if the electronic nose and a newer technology, FAIMS (Field Asymmetric Ion Mobility Spectrometry), can be used to identify and help inform the treatment pathway for patients receiving pelvic radiotherapy, which frequently causes gastrointestinal side-effects, severe in some. From a larger group, 23 radiotherapy patients were selected where half had the highest levels of toxicity and the others the lowest. Stool samples were obtained before and four weeks after radiotherapy and the volatiles and gases emitted analysed by both methods; these chemicals are products of fermentation caused by gut microflora. Principal component analysis of the electronic nose data and wavelet transform followed by Fisher discriminant analysis of FAIMS data indicated that it was possible to separate patients after treatment by their toxicity levels. More interestingly, differences were also identified in their pre-treatment samples. We believe these patterns arise from differences in gut microflora where some combinations of bacteria result to give this olfactory signature. In the future our approach may result in a technique that will help identify patients at “high risk” even before radiation treatment is started
- …
