24 research outputs found

    Adaptations to migration in birds: behavioural strategies, morphology and scaling effects

    No full text
    The annual life cycle of many birds includes breeding, moult and migration. All these processes are time and energy consuming and the extent of investment in any one may compromise the others. The output from breeding is of course the ultimate goal for all birds, while the investment in moult and migration should be selected so that lifetime fitness is maximized. In particular, long-distance migrants breeding at high latitudes face severe time pressures, which is a probable reason why natural selection has evolved efficient behaviours, physiological and morphological adaptations allowing the maximum possible migration speed. Optimal migration theory commonly assumes time minimization as an overall strategy, but the minimization of energy cost and predation risk may also be involved. Based on these assumptions, it is possible to derive adaptive behaviours such as when and at which fuel load a stopover site should be abandoned. I review some core components of optimal migration theory together with some key predictions. A review of accumulated empirical tests of the departure rule indicates that time minimization is an important component of the overall migration strategy, and hence gives support to the assumption about time-selected migration. I also briefly discuss how the optimal policy may be implemented by the bird by applying a set of simple rules. The time constraints on migrants increase with increasing body size. Some consequences of this are discussed

    Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe

    No full text
    Recent experiments exposing migratory birds to altered magnetic fields simulating geographical displacements have shown that the geomagnetic field acts as an external cue affecting migratory fuelling behaviour. This is the first study investigating fuel deposition in relation to geomagnetic cues in long-distance migrants using the western passage of the Mediterranean region. Juvenile wheatears (Oenanthe oenanthe) were exposed to a magnetically simulated autumn migration from southern Sweden to West Africa. Birds displaced parallel to the west of their natural migration route, simulating an unnatural flight over the Atlantic Ocean, increased their fuel deposition compared to birds experiencing a simulated migration along the natural route. These birds, on the other hand, showed relatively low fuel loads in agreement with earlier data on wheatears trapped during stopover. The experimental displacement to the west, corresponding to novel sites in the Atlantic Ocean, led to a simulated longer distance to the wintering area, probably explaining the observed larger fuel loads. Our data verify previous results suggesting that migratory birds use geomagnetic cues for fuelling decisions and, for the first time, show that birds, on their first migration, can use geomagnetic cues to compensate for a displacement outside their normal migratory route, by adjusting fuel deposition
    corecore