6 research outputs found
The importance of non‐diffusional factors in determining photosynthesis of two contrasting quinoa ecotypes (Chenopodium quinoa willd.) subjected to salinity conditions
The broad distribution of quinoa in saline and non‐saline environments is reflected in variations in the photosynthesis‐associated mechanisms of different ecotypes. The aim of this study was to characterize the photosynthetic response to high salinity (0.4 M NaCl) of two contrasting Chilean genotypes, Amarilla (salt‐tolerant, salares ecotype) and Hueque (salt‐sensitive, coastal ecotype). Our results show that saline stress induced a significant decrease in the K+/Na+ ratio in roots and an increase in glycine betaine in leaves, particularly in the sensitive genotype (Hueque). Measurement of the photosynthesis‐related parameters showed that maximum CO2 assimilation (Amax) in control plants was comparable between genotypes (ca. 9–10 μmol CO2 m−2 s−1). However, salt treatment produced different responses, with Amax values decreasing by 65.1% in the sensitive ecotype and 37.7% in the tolerant one. Although both genotypes maintained mesophyll conductance when stomatal restrictions were removed, the biochemical components of Amarilla were impaired to a lesser extent under salt stress conditions: for example, the maximum rate of ribulose‐1,5‐ bisphosphate carboxylase/oxygenase (RubisCO; Vcmax) was not as affected in Amarilla, revealing that this enzyme has a higher affinity for its substrate in this genotype and, thus, a better carboxylation efficiency. The present results show that the higher salinity tolerance of Amarilla was also due to its ability to control non‐diffusional components, indicating its superior photosynthetic capacity compared to Hueque, particularly under salt stress conditions
Experiencias de vinculación universitaria desde la formación, la intervención social y la investigación (Complexus 10)
La edición revela experiencias universitarias que analizan y proponen soluciones a problemas sociales mediante la acción colectiva. Muestra la fusión de saberes académicos, experiencias de diversos actores y esfuerzos de la sociedad que se entretejen para construir un mundo más justo y más humano.ITESO, A.C
Euclid preparation. TBD. The effect of linear redshift-space distortions in photometric galaxy clustering and its cross-correlation with cosmic shear
Cosmological surveys planned for the current decade will provide us with
unparalleled observations of the distribution of galaxies on cosmic scales, by
means of which we can probe the underlying large-scale structure (LSS) of the
Universe. This will allow us to test the concordance cosmological model and its
extensions. However, precision pushes us to high levels of accuracy in the
theoretical modelling of the LSS observables, in order not to introduce biases
in the estimation of cosmological parameters. In particular, effects such as
redshift-space distortions (RSD) can become relevant in the computation of
harmonic-space power spectra even for the clustering of the photometrically
selected galaxies, as it has been previously shown in literature studies. In
this work, we investigate the contribution of linear RSD, as formulated in the
Limber approximation by arXiv:1902.07226, in forecast cosmological analyses
with the photometric galaxy sample of the Euclid survey, in order to assess
their impact and quantify the bias on the measurement of cosmological
parameters that neglecting such an effect would cause. We perform this task by
producing mock power spectra for photometric galaxy clustering and weak
lensing, as expected to be obtained from the Euclid survey. We then use a
Markov chain Monte Carlo approach to obtain the posterior distributions of
cosmological parameters from such simulated observations. We find that
neglecting the linear RSD leads to significant biases both when using galaxy
correlations alone and when these are combined with cosmic shear, in the
so-called 32pt approach. Such biases can be as large as
-equivalent when assuming an underlying CDM cosmology. When
extending the cosmological model to include the equation-of-state parameters of
dark energy, we find that the extension parameters can be shifted by more than
.Comment: 15 pages, 5 figures. To be submitted in A&
Irrigation restriction effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe barbadensis Miller)
Aloe barbadensis Miller, known as Aloe Vera, requires limited irrigation depending on the capacity of the soil to retain humidity, since it is a CAM species and thus naturally adapted to conditions of dryness and high temperatures. Therefore, we postulated that plants of Aloe Vera plants under conditions of water deficit should improve their water use efficiency (WUE) by performing osmotic adjustment (OA) with a temporal correlation between WUE and OA. The objective of the investigation was to determine the effect of water restriction on the WUE and OA of A. barbadensis under different water treatments. 18-month old Aloe Vera plants were cultivated in pots with a soil substrate that was a mixture of equal parts of sand and organic matter with 18% of FC and 9% of permanent wilting point. To determine the effects of the soil humidity on plant WUE and OA, four treatments were arranged in a complete random design with four repetitions; these were 100%, 75%, 50% and 25% of FC, which correspond to an evatranspiration of 11.4, 9.6, 4.0 and 1.7Â L per plant, respectively. The water treatments were maintained by frequent irrigation. The following variables were determined: dry matter, leaf water potential, relative water content (RWC), amount of gel produced, sap flow, proline content, soluble and total sugars and oligo and polyfructans. Aloe Vera increased WUE with increasing water deficit; the sap flow rate decreased with water restrictions, and the plants performed osmotic adjustment by increasing the synthesis of proline, soluble and total sugars as well as the amounts of oligo and polyfructans, mainly polymers of [beta]-(2Â -->Â 6) kestotriose, changing from the inulin type to the neofructan type. The plants most and less irrigated (100% and 25% of FC) were the groups with lowest WUE. The plants irrigated with 75% of FC presented the best WUE in terms of dry mass and amount of gel produced by a litre of supplied water.Field capacity Water use efficiency (WUE) Osmotic adjustment Sap flow rate Fructans