910 research outputs found
On the coupling of massless particles to scalar fields
It is investigated if massless particles can couple to scalar fields in a
special relativistic theory with classical particles. The only possible obvious
theory which is invariant under Lorentz transformations and reparametrization
of the affine parameter leads to trivial trajectories (straight lines) for the
massless case, and also the investigation of the massless limit of the massive
theory shows that there is no influence of the scalar field on the limiting
trajectories.
On the other hand, in contrast to this result, it is shown that massive
particles are influenced by the scalar field in this theory even in the
ultra-relativistic limit.Comment: 9 pages, no figures, uses titlepage.sty, LaTeX 2.09 file, submitted
to International Journal of Theoretical Physic
The Galactic Kinematics of Mira Variables
The galactic kinematics of Mira variables derived from radial velocities,
Hipparcos proper motions and an infrared period-luminosity relation are
reviewed. Local Miras in the 145-200day period range show a large asymmetric
drift and a high net outward motion in the Galaxy. Interpretations of this
phenomenon are considered and (following Feast and Whitelock 2000) it is
suggested that they are outlying members of the bulge-bar population and
indicate that this bar extends beyond the solar circle.Comment: 7 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and
their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie
Deprojection of Rich Cluster Images
We consider a general method of deprojecting 2D images to reconstruct the 3D
structure of the projected object, assuming axial symmetry. The method consists
of the application of the Fourier Slice Theorem to the general case where the
axis of symmetry is not necessarily perpendicular to the line of sight, and is
based on an extrapolation of the image Fourier transform into the so-called
cone of ignorance. The method is specifically designed for the deprojection of
X-ray, Sunyaev-Zeldovich (SZ) and gravitational lensing maps of rich clusters
of galaxies. For known values of the Hubble constant, H0, and inclination
angle, the quality of the projection depends on how exact is the extrapolation
in the cone of ignorance. In the case where the axis of symmetry is
perpendicular to the line of sight and the image is noise-free, the
deprojection is exact. Given an assumed value of H0, the inclination angle can
be found by matching the deprojected structure out of two different images of a
given cluster, e.g., SZ and X-ray maps. However, this solution is degenerate
with respect to its dependence on the assumed H0, and a third independent image
of the given cluster is needed to determine H0 as well. The application of the
deprojection algorithm to upcoming SZ, X-ray and weak lensing projected mass
images of clusters will serve to determine the structure of rich clusters, the
value of H0, and place constraints on the physics of the intra-cluster gas and
its relation to the total mass distribution.Comment: 7 pages, LaTeX, 2 Postscript figures, uses as2pp4.sty. Accepted for
publication in ApJ Letters. Also available at:
http://astro.berkeley.edu:80/~squires/papers/deproj.ps.g
A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion onto the Milky Way
We present an analysis of the asymmetries in the population of Galactic
M-giant stars present in the 2MASS All Sky catalogue. Several large-scale
asymmetries are detected, the most significant of which is a strong
elliptical-shaped stellar over-density, close to the Galactic plane at (l=240,
b=-8), in the constellation of Canis Major. A small grouping of globular
clusters (NGC 1851, NGC 1904, NGC 2298, and NGC 2808), coincident in position
and radial velocity, surround this structure, as do a number of open clusters.
The population of M-giant stars in this over-density is similar in number to
that in the core of the Sagittarius dwarf galaxy. We argue that this object is
the likely dwarf galaxy progenitor of the ring-like structure that has recently
been found at the edge of the Galactic disk. A numerical study of the tidal
disruption of an accreted dwarf galaxy is presented. The simulated debris fits
well the extant position, distance and velocity information on the ``Galactic
Ring'', as well as that of the M-giant over-densities, suggesting that all
these structures are the consequence of a single accretion event. The disrupted
dwarf galaxy stream orbits close to the Galactic Plane, with a pericentre at
approximately the Solar circle, an orbital eccentricity similar to that of
stars in the Galactic thick disk, as well as a vertical scale height similar to
that of the thick disk. This finding strongly suggests that the Canis Major
dwarf galaxy is a building block of the Galactic thick disk, that the thick
disk is continually growing, even up to the present time, and that thick disk
globular clusters were accreted onto the Milky Way from dwarf galaxies in
co-planar orbits.Comment: 13 pages, 18 figures (2 in colour), accepted for publication in MNRA
Reconstructing Three-dimensional Structure of Underlying Triaxial Dark Halos From Xray and Sunyaev-Zel'dovich Effect Observations of Galaxy Clusters
While the use of galaxy clusters as {\it tools} to probe cosmology is
established, their conventional description still relies on the spherical
and/or isothermal models that were proposed more than 20 years ago. We present,
instead, a deprojection method to extract their intrinsic properties from X-ray
and Sunyaev--Zel'dovich effect observations in order to improve our
understanding of cluster physics. First we develop a theoretical model for the
intra-cluster gas in hydrostatic equilibrium in a triaxial dark matter halo
with a constant axis ratio. In this theoretical model, the gas density profiles
are expressed in terms of the intrinsic properties of the dark matter halos.
Then, we incorporate the projection effect into the gas profiles, and show that
the gas surface brightness profiles are expressed in terms of the
eccentricities and the orientation angles of the dark halos. For the practical
purpose of our theoretical model, we provide several empirical fitting formulae
for the gas density and temperature profiles, and also for the surface
brightness profiles relevant to X-ray and Sunyaev--Zel'dovich effect
observations. Finally, we construct a numerical algorithm to determine the halo
eccentricities and orientation angles using our model, and demonstrate that it
is possible in principle to reconstruct the 3D structures of the dark halos
from the X-ray and/or Sunyaev-Zel'dovich effect cluster data alone without
requiring priors such as weak lensing informations and without relying on such
restrictive assumptions as the halo axial symmetry about the line-of-sight.Comment: Accepted version, new discussions added, typos and minor mistakes
corrected, ApJ in press (2004, Feb. 1 scheduled, Vol. 601, No. 2 issue),26
pages, 7 postscript figure
Initial conditions for disc galaxies
We present a general recipe for constructing N-body realizations of galaxies
comprised of near-spherical and disc components. First, an exact spherical
distribution function for the spheroids (halo & bulge) is determined, such that
it is in equilibrium with the gravitational monopole of the disc components.
Second, an N-body realisation of this model is adapted to the full disc
potential by growing the latter adiabatically from its monopole. Finally, the
disc is sampled with particles drawn from an appropriate distribution function,
avoiding local-Maxwellian approximations. We performed test simulations and
find that the halo and bulge radial density profile very closely match their
target model, while they become slightly oblate due to the added disc gravity.
Our findings suggest that vertical thickening of the initially thin disc is
caused predominantly by spiral and bar instabilities, which also result in a
radial re-distribution of matter, rather than scattering off interloping
massive halo particles.Comment: 10 pages, 13 figures, MNRAS accepted; typo in email address fixe
Quantifying the heart of darkness with GHALO - a multi-billion particle simulation of our galactic halo
We perform a series of simulations of a Galactic mass dark matter halo at
different resolutions, our largest uses over three billion particles and has a
mass resolution of 1000 M_sun. We quantify the structural properties of the
inner dark matter distribution and study how they depend on numerical
resolution. We can measure the density profile to a distance of 120 pc (0.05%
of R_vir) where the logarithmic slope is -0.8 and -1.4 at (0.5% of R_vir). We
propose a new two parameter fitting function that has a linearly varying
logarithmic density gradient which fits the GHALO and VL2 density profiles
extremely well. Convergence in the density profile and the halo shape scales as
N^(-1/3), but the shape converges at a radius three times larger at which point
the halo becomes more spherical due to numerical resolution. The six
dimensional phase-space profile is dominated by the presence of the
substructures and does not follow a power law, except in the smooth
under-resolved inner few kpc.Comment: 6 pages, 4 figures, submitted to MNRAS Letters, for full sized
images, see http://www.itp.uzh.ch/news.htm
- …