25,519 research outputs found
Group theoretic dimension of stationary symmetric \alpha-stable random fields
The growth rate of the partial maximum of a stationary stable process was
first studied in the works of Samorodnitsky (2004a,b), where it was
established, based on the seminal works of Rosi\'nski (1995,2000), that the
growth rate is connected to the ergodic theoretic properties of the flow that
generates the process. The results were generalized to the case of stable
random fields indexed by Z^d in Roy and Samorodnitsky (2008), where properties
of the group of nonsingular transformations generating the stable process were
studied as an attempt to understand the growth rate of the partial maximum
process. This work generalizes this connection between stable random fields and
group theory to the continuous parameter case, that is, to the fields indexed
by R^d.Comment: To appear in Journal of Theoretical Probability. Affiliation of the
authors are update
Singular Lagrangian Systems on Jet Bundles
The jet bundle description of time-dependent mechanics is revisited. The
constraint algorithm for singular Lagrangians is discussed and an exhaustive
description of the constraint functions is given. By means of auxiliary
connections we give a basis of constraint functions in the Lagrangian and
Hamiltonian sides. An additional description of constraints is also given
considering at the same time compatibility, stability and second-order
condition problems. Finally, a classification of the constraints in first and
second class is obtained using a cosymplectic geometry setting. Using the
second class constraints, a Dirac bracket is introduced, extending the
well-known construction by Dirac.Comment: 65 pages. LaTeX fil
Mixing Time Scales in a Supernova-Driven Interstellar Medium
We study the mixing of chemical species in the interstellar medium (ISM).
Recent observations suggest that the distribution of species such as deuterium
in the ISM may be far from homogeneous. This raises the question of how long it
takes for inhomogeneities to be erased in the ISM, and how this depends on the
length scale of the inhomogeneities. We added a tracer field to the
three-dimensional, supernova-driven ISM model of Avillez (2000) to study mixing
and dispersal in kiloparsec-scale simulations of the ISM with different
supernova (SN) rates and different inhomogeneity length scales. We find several
surprising results. Classical mixing length theory fails to predict the very
weak dependence of mixing time on length scale that we find on scales of
25--500 pc. Derived diffusion coefficients increase exponentially with time,
rather than remaining constant. The variance of composition declines
exponentially, with a time constant of tens of Myr, so that large differences
fade faster than small ones. The time constant depends on the inverse square
root of the supernova rate. One major reason for these results is that even
with numerical diffusion exceeding physical values, gas does not mix quickly
between hot and cold regions.Comment: 23 pages, 14 figures that include 7 simulation images and 19 plots,
accepted for publication at Ap
Timescale for equilibration of N/Z gradients in dinuclear systems
Equilibration of N/Z in binary breakup of an excited and transiently deformed
projectile-like fragment (PLF*), produced in peripheral collisions of 64Zn +
27Al, 64Zn, 209Bi at E/A = 45 MeV, is examined. The composition of emitted
light fragments (3<=Z<=6) changes with the decay angle of the PLF*. The most
neutron-rich fragments observed are associated with a small rotation angle. A
clear target dependence is observed with the largest initial N/Z correlated
with the heavy, neutron-rich target. Using the rotation angle as a clock, we
deduce that N/Z equilibration persists for times as long as 3-4 zs (1zs = 1 x
10^-21 s = 300 fm/c). The rate of N/Z equilibration is found to depend on the
initial neutron gradient within the PLF*.Comment: 6 pages, 4 figure
Fermion- and spin-counting in strongly correlated systems in and out of thermal equilibrium
Atom counting theory can be used to study the role of thermal noise in
quantum phase transitions and to monitor the dynamics of a quantum system. We
illustrate this for a strongly correlated fermionic system, which is equivalent
to an anisotropic quantum XY chain in a transverse field, and can be realized
with cold fermionic atoms in an optical lattice. We analyze the counting
statistics across the phase diagram in the presence of thermal fluctuations,
and during its thermalization when the system is coupled to a heat bath. At
zero temperature, the quantum phase transition is reflected in the cumulants of
the counting distribution. We find that the signatures of the crossover remain
visible at low temperature and are obscured with increasing thermal
fluctuations. We find that the same quantities may be used to scan the dynamics
during the thermalization of the system.Comment: 10 pages, 7 figure
Unified formalism for higher-order non-autonomous dynamical systems
This work is devoted to giving a geometric framework for describing
higher-order non-autonomous mechanical systems. The starting point is to extend
the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these
kinds of systems, generalizing previous developments for higher-order
autonomous mechanical systems and first-order non-autonomous mechanical
systems. Then, we use this unified formulation to derive the standard
Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map
and the Euler-Lagrange and the Hamilton equations, both for regular and
singular systems. As applications of our model, two examples of regular and
singular physical systems are studied.Comment: 43 pp. We have corrected and clarified the statement of Propositions
2 and 3. A remark is added after Proposition
Constraining the Randall-Sundrum modulus in the light of recent PVLAS data
Recent PVLAS data put stringent constraints on the measurement of
birefringence and dichroism of electromagnetic waves travelling in a constant
and homogeneous magnetic field. There have been theoretical predictions in
favour of such phenomena when appropriate axion-electromagnetic coupling is
assumed. Origin of such a coupling can be traced in a low energy string action
from the requirement of quantum consistency. The resulting couplings in such
models are an artifact of the compactification of the extra dimensions present
inevitably in a string scenario. The moduli parameters which encode the compact
manifold therefore play a crucial role in determining the axion-photon
coupling. In this work we examine the possible bounds on the value of compact
modulus that emerge from the experimental limits on the coupling obtained from
the PVLAS data. In particular we focus into the Randall-Sundrum (RS) type of
warped geometry model whose modulus parameter is already restricted from the
requirement of the resolution of gauge hierarchy problem in connection with the
mass of the Higgs. We explore the bound on the modulus for a wide range of the
axion mass for both the birefringence and the dichroism data in PVLAS. We show
that the proposed value of the modulus in the RS scenario can only be
accommodated for axion mass \gsim 0.3 eV.Comment: 26 pages, 1 figure, LaTex; added references, typos corrected. Minor
changes in the text, a comment added in the Conclusio
Analysing Personal Characteristics of Lone-Actor Terrorists: Research Findings and Recommendations
This Research Note presents the outcome of a project that looked at the personal characteristics of lone-actor terrorists. It is part of the larger Countering Lone-Actor Terrorism (CLAT) project. The project described here aimed to improve understanding of, and responses to, the phenomenon of (potentially) violent lone-actors based on an analysis of 120 cases from across Europe. The Research Note focuses on the personal characteristics of lone-actor terrorists. First of all, it presents the main findings of the general analysis of the study into personal variables of lone-actor terrorists. Subsequently, the authors outline a set of recommendations based on the key findings. In the beginning, we present the main research questions of the CLAT project and the working definition of lone-actor terroris
- …