21 research outputs found

    Human TRIM Gene Expression in Response to Interferons

    Get PDF
    Tripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5α in primate cells has stimulated much interest in the potential role of TRIM proteins in antiviral activities and innate immunity.To test if TRIM genes are up-regulated during antiviral immune responses, we performed a systematic analysis of TRIM gene expression in human primary lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, type I and II) or following FcγR-mediated activation of macrophages. We found that 27 of the 72 human TRIM genes are sensitive to IFN. Our analysis identifies 9 additional TRIM genes that are up-regulated by IFNs, among which only 3 have previously been found to display an antiviral activity. Also, we found 2 TRIM proteins, TRIM9 and 54, to be specifically up-regulated in FcγR-activated macrophages.Our results present the first comprehensive TRIM gene expression analysis in primary human immune cells, and suggest the involvement of additional TRIM proteins in regulating host antiviral activities

    Using X-Rays to Test CVD Diamond Detectors for Areal Density Measurement at the National Ignition Facility Using X-Rays To Test CVD Diamond Detectors For Areal Density Measurement At The National Ignition Facility

    No full text
    At the National Ignition Facility (NIF), 192 laser beams will compress a target containing a mixture of deuterium and tritium (DT) that will release fusion neutrons, photons, and other radiation. Diagnostics are being designed to measure this emitted radiation to infer crucial parameters of an ignition shot. Chemical Vapor Deposited (CVD) diamond is one of the ignition diagnostics that will be used as a neutron time-of-flight detector for measuring primary (14.1 MeV) neutron yield, ion temperature, and plasma areal density. This last quantity is the subject of this study and is inferred from the number of downscattered neutrons arriving late in time, divided by the number of primary neutrons. We determine in this study the accuracy with which this detector can measure areal density, when the limiting factor is detector and electronics saturation. We used laser-produced x-rays to reproduce NIF signals in terms of charge carriers density, time between pulses, and amplitude contrast and found that the effect of the large pulse on the small pulse is at most 8.4%, which is less than the NIF accuracy requirement of ±10%
    corecore