1,304 research outputs found
Quantum depletion of collapsing Bose-Einstein condensates
We perform the first numerical three-dimensional studies of quantum field
effects in the Bosenova experiment on collapsing condensates by E. Donley et
al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a
stochastic truncated Wigner simulation of the collapse, the collapse times are
larger than the experimentally measured values. We find that a finite
temperature initial state leads to an increased creation rate of uncondensed
atoms, but not to a reduction of the collapse time. A comparison of the
time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more
tractable spherical trap shows excellent agreement between the uncondensed
populations. We conclude that the discrepancy between the experimental and
theoretical values of the collapse time cannot be explained by Gaussian quantum
fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio
Quantum-field dynamics of expanding and contracting Bose-Einstein condensates
We analyze the dynamics of quantum statistics in a harmonically trapped
Bose-Einstein condensate, whose two-body interaction strength is controlled via
a Feshbach resonance. From an initially non-interacting coherent state, the
quantum field undergoes Kerr squeezing, which can be qualitatively described
with a single mode model. To render the effect experimentally accessible, we
propose a homodyne scheme, based on two hyperfine components, which converts
the quadrature squeezing into number squeezing. The scheme is numerically
demonstrated using a two-component Hartree-Fock-Bogoliubov formalism.Comment: 9 pages, 4 figure
Cannabinoid receptors expression in bone marrow trephine biopsy of chronic lymphocytic leukaemia patients treated with purine analogues
Background: Cannabinoid receptors CB1 and CB2 are part the endocannabinoid system that plays an important role in the process of proliferation and apoptosis of different neoplastic cells. B-cell chronic lymphocytic leukaemia is one of the diseases in which these processes are altered. Aim: The aim of our study was the assessment of cannabinoid receptor expression on the B-lymphocytes in bone marrow trephine biopsy from leukaemic patients at diagnosis and after purine analogue treatment. Methods: The biopsy was taken routinely and standard immunohistochemical staining procedure for paraffin embedded sections was applied. The cannabinoid receptors were detected using specific primary polyclonal antibody anti-CB1 and anti-CB2. Additionally, an existence of cannabinoid receptors was confirmed by flow cytometry. Results: The results showed that the expression of CB1 receptor on the surface of neoplastic cells was lower than that of CB2 (17.0 Β± 3.1% and 92.1 Β± 1.7% respectively, p < 0.001). Nine of the patients responded to applied treatment with a reduction in leukaemic infiltration (77.2 Β± 6.9% to 30.2 Β± 6.5%, p = 0.007) and CB1 receptor expression (24.4 Β± 4.8% to 8.6 Β± 2.9%, p = 0.01), but there was no change in CB2 expression (91.7 Β± 2.7% vs 90.9 Β± 2.8%, p = 0.69). Four patients without remission expressed even greater number of the receptors. In all of the cases both cannabinoid receptor types antibodies gave positive reaction. Furthermore, the existence of cannabinoid receptors on neoplastic lymphocytes was confirmed by flow cytometry. Conclusion: The study provides original evidence for the existence of cannabinoid receptors on B-lymphocytes in chronic lymphocytic leukaemia patients. The receptors are thought to be a new structure that can modify the course of the disease and may be considered as a new target in leukaemia treatment.ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅: ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² CB1 ΠΈ CB2 ΡΠ² Π»ΡΡΡΡΡ ΡΠ°ΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ½Π΄ΠΎΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ², ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΠ³ΡΠ°Π΅Ρ Π²Π°ΠΆΠ½ΡΡ
ΡΠΎΠ»Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ°Ρ
ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ Π°ΠΏΠΎΠΏΡΠΎΠ·Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π½Π΅ΠΎΠΏΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π΅ΡΠΎΠΊ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ
Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΡΠ²Π»ΡΠ΅ΡΡΡ Π-ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΉ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π»ΠΈΠΌΡΠ»Π΅ΠΉΠΊΠΎΠ·. Π¦Π΅Π»Ρ: ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ²
ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² Π½Π° Π-Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
Π² ΡΡΠ΅ΠΏΠ°Π½ΠΎΠ±ΠΈΠΎΠΏΡΠ°ΡΠ°Ρ
Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Π»Π΅ΠΉΠΊΠΎΠ·ΠΎΠΌ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π»Π΅ΡΠ΅Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ
ΠΏΡΡΠΈΠ½ΠΎΠ²ΡΡ
Π°Π½Π°Π»ΠΎΠ³ΠΎΠ². ΠΠ΅ΡΠΎΠ΄Ρ: Π±ΠΈΠΎΠΏΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΡΠΈΠ½Π½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ; ΠΈΠΌΠΌΡΠ½ΠΎΠ³ΠΈΡΡΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΠΏΠ°ΡΠ°ΡΠΈΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΡΠ΅Π·ΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ΅. Π Π΅ΡΠ΅ΠΏΡΠΎΡΡ ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ
ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π°Π½ΡΠΈΡΠ΅Π» Π°Π½ΡΠΈ-CB1 ΠΈ Π°Π½ΡΠΈ-CB2. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΎ ΠΏΡΠΈ ΠΏΠΎ-
ΠΌΠΎΡΠΈ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΡΠ»ΡΠΎΡΠΈΠΌΠ΅ΡΡΠΈΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ° CB1 Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΡ CB2 (17,0Β Β± 3,1% ΠΈ 92,1 1,7% ΡΠ²Π΅Π½Π½ΠΎ, p < 0,001). ΠΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ
Ρ 9 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΎΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠ΅ Π»Π΅ΠΉΠΊΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠΈΠ»ΡΡΡΠ°ΡΠ° (77,2 6,9% Π΄ΠΎ 30,2 6,5%, p = 0,007) ΠΈ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ
ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠ° CB1 (24,4 4,8% Π΄ΠΎ 8,6 2,9%, p = 0,01), ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ Π² ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ CB2 Π½Π΅ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ (91,7
2,7% ΠΏΡΠΎΡΠΈΠ² 90,9 2,8%, p = 0,69). Π£ 4 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Ρ ΠΊΠΎΡΠΎΡΡΡ
Π½Π΅ ΡΠ΄Π°Π»ΠΎΡΡ Π΄ΠΎΡΡΠΈΡΡ ΡΠ΅ΠΌΠΈΡΡΠΈΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅
ΡΠΊΡΠΏΡΠ΅ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ². ΠΠΎ Π²ΡΠ΅Ρ
ΡΠ»ΡΡΠ°ΡΡ
ΠΌΠ°ΡΠΊΠΈΡΠΎΠ²ΠΊΠΈ Π°Π½ΡΠΈΡΠ΅Π»Π°ΠΌΠΈ ΠΊ ΠΎΠ±ΠΎΠΈΠΌ ΡΠΈΠΏΠ°ΠΌ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΈ ΠΏΠΎΠ»ΠΎ-
ΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π°ΠΊΡΠΈΡ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² Π½Π° Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΊΠ»Π΅ΡΠΊΠ°Ρ
ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π»ΠΈ ΠΏΡΠΈ
ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠΌΠ΅ΡΡΠΈΠΈ. ΠΡΠ²ΠΎΠ΄Ρ: Π² Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΈΠ·Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ΅ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠ² ΠΊΠ°Π½Π½Π°Π±ΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ²
Π½Π° Π-Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π»ΠΈΠΌΡΠΎΠ»Π΅ΠΉΠΊΠΎΠ·ΠΎΠΌ. Π£ΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π½ΠΎΠ²ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ
ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π·Π½ΠΈ, ΠΈ ΠΌΠΎΠ³ΡΡ ΡΡΠΈΡΠ°ΡΡΡΡ Π½ΠΎΠ²ΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΡΡ ΠΏΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡΠ½ΡΡ
Π»Π΅ΠΉΠΊΠΎΠ·ΠΎΠΌ
Zipf's law in Multifragmentation
We discuss the meaning of Zipf's law in nuclear multifragmentation. We remark
that Zipf's law is a consequence of a power law fragment size distribution with
exponent . We also recall why the presence of such distribution
is not a reliable signal of a liquid-gas phase transition
A search on Dirac equation
The solutions, in terms of orthogonal polynomials, of Dirac equation with
analytically solvable potentials are investigated within a novel formalism by
transforming the relativistic equation into a Schrodinger like one. Earlier
results are discussed in a unified framework and certain solutions of a large
class of potentials are given.Comment: 9 page
New Shape Invariant Potentials in Supersymmetric Quantum Mechanics
Quantum mechanical potentials satisfying the property of shape invariance are
well known to be algebraically solvable. Using a scaling ansatz for the change
of parameters, we obtain a large class of new shape invariant potentials which
are reflectionless and possess an infinite number of bound states. They can be
viewed as q-deformations of the single soliton solution corresponding to the
Rosen-Morse potential. Explicit expressions for energy eigenvalues,
eigenfunctions and transmission coefficients are given. Included in our
potentials as a special case is the self-similar potential recently discussed
by Shabat and Spiridonov.Comment: 8pages, Te
Supersonic optical tunnels for Bose-Einstein condensates
We propose a method for the stabilisation of a stack of parallel vortex rings
in a Bose-Einstein condensate. The method makes use of a hollow laser beam
containing an optical vortex. Using realistic experimental parameters we
demonstrate numerically that our method can stabilise up to 9 vortex rings.
Furthermore we point out that the condensate flow through the tunnel formed by
the core of the optical vortex can be made supersonic by inserting a
laser-generated hump potential. We show that long-living immobile condensate
solitons generated in the tunnel exhibit sonic horizons. Finally, we discuss
prospects of using these solitons for analogue gravity experiments.Comment: 14 pages, 3 figures, published versio
- β¦