511 research outputs found

    The Jabal Akhdar Dome in the Oman Mountains : evolution of a dynamic fracture system

    Get PDF
    Acknowledgments: This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling,” which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdo¨l- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results. The German University of Technology in Oman (GU-Tech) is acknowledged for its logistic support. We gratefully acknowledge the reviewers Andrea Billi and Jean-Paul Breton, whose constructive reviews greatly improved the manuscriptPeer reviewedPreprin

    Searches for continuous gravitational waves from nine young supernova remnants

    No full text
    We describe directed searches for continuous gravitational waves (GWs) in data from the sixth Laser Interferometer Gravitational-wave Observatory (LIGO) science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of 10. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3–25.3 days using the matched-filtering F{\mathcal{F}}-statistic. We found no evidence of GW signals. We set 95% confidence upper limits as strong (low) as 4 × 10?25 on intrinsic strain, 2 × 10?7 on fiducial ellipticity, and 4 × 10?5 on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes

    Reconstructed CKM Matrices

    Full text link
    We construct quark mixing matrices within a group theoretic framework which is easily applicable to any number of generations. Familiar cases are retrieved and related, and it is hoped that our viewpoint may have advantages both phenomenologically and for constructing underlying mass matrix schemes.Comment: 15 pages,LaTeX,no macro

    Gravitational waves from spinning eccentric binaries

    Full text link
    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relation we show that, on contrary to the general expectations, the post-Newtonian approximation should not be applied once the post-Newtonian parameter gets beyond the critical value 0.080.1\sim 0.08-0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems---which could be formed e.g. in various many-body interactions in the galactic halo---we have found that they possess very specific characteristics which may be used to identify these type of binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra

    Improved source localization with LIGO India

    Full text link
    A global network of advanced gravitational wave interferometric detectors is under construction. These detectors will offer an order of magnitude improvement in sensitivity over the initial detectors and will usher in the era of gravitational wave astronomy. In this paper, we evaluate the benefits of relocating one of the advanced LIGO detectors to India.Comment: 7 pages, 3 figures, accepted for publication in proceedings of ICGC2011 conference. Localization figures update

    Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris

    Full text link
    ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitation Wave detection) is an optimization of ASTROD to focus on the goal of detection of gravitation waves. The detection sensitivity is shifted 52 times toward larger wavelength compared to that of LISA. The mission orbits of the 3 spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecraft range interferometrically with one another with arm length about 260 million kilometers. In order to attain the requisite sensitivity for ASTROD-GW, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. For suppressing laser frequency noise, we need to use time delay interferometry (TDI) to match the two different optical paths (times of travel). Since planets and other solar-system bodies perturb the orbits of ASTROD-GW spacecraft and affect the (TDI), we simulate the time delay numerically using CGC 2.7 ephemeris framework. To conform to the ASTROD-GW planning, we work out a set of 20-year optimized mission orbits of ASTROD-GW spacecraft starting at June 21, 2028, and calculate the residual optical path differences in the first and second generation TDI for one-detector case. In our optimized mission orbits for 20 years, changes of arm length are less than 0.0003 AU; the relative Doppler velocities are less than 3m/s. All the second generation TDI for one-detector case satisfies the ASTROD-GW requirement.Comment: 17 pages, 7 figures, 1 tabl

    LOOC UP: Locating and observing optical counterparts to gravitational wave bursts

    Full text link
    Gravitational wave (GW) bursts (short duration signals) are expected to be associated with highly energetic astrophysical processes. With such high energies present, it is likely these astrophysical events will have signatures in the EM spectrum as well as in gravitational radiation. We have initiated a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst candidates. The proposed method analyzes near real-time data from the LIGO-Virgo network, and then uses a telescope network to seek optical-transient counterparts to candidate GW signals. We carried out a pilot study using S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools for such a search. We will present the method, with an emphasis on the potential for such a search to be carried out during the next science run of LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional references, and minor text changes v3) added 1 figure, additional references, and minor text changes. v4) Updated references and acknowledgments. To be published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit

    An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv

    Get PDF
    We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a 30 deg2 field at ΔT = 2, 9, and 33 days post-merger at a frequency of 944 MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers 89% of the LIGO/Virgo localization region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, AT2019osy, we performed multiwavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from NSBH mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date. © 2019. The American Astronomical Society. All rights reserved
    corecore