1,188 research outputs found
Social and political mechanisms for establishing ecosystem management objectives
While social values guide the objectives of ecosystem management, successful execution requires a public well-informed on the consequences of alternative decision options. Daniels advocates a group-learning process entitled collaborative learning to achieve this understanding. Agency personnel should assume the roles of educators, facilitators, and managers. The agencies must also open up, meditate, and share decision-making power with the public while avoiding advocacy of any particular interest-group\u27s desires. Policy makers have a role in influencing social values by fostering a nonadversarial politics of cooperation and consensus building
Проблеми побудови відкритої та гнучкої методичної системи навчання математичних методів фізики у педагогічних університетах
(uk) Розглядаються тенденції розвитку фундаментальної фізико-математичної освіти, зближення природничо-наукового та гуманітарного, що уможливлюють розв’язання проблеми побудови відкритої та гнучкої науково-обґрунтованої методичної системи навчання математичних методів фізики у педагогічних університетах.(en) The article examines progressive trends of fundamental physical and mathematical education, rapprochement of naturally scientific and humanitarian, that makes possible to solve the problem of constructing the open and flexible scientifically reasonable methodical systeme of mathematical methods of physics teaching inpedagogical universities
Mapping between dissipative and Hamiltonian systems
Theoretical studies of nonequilibrium systems are complicated by the lack of
a general framework. In this work we first show that a transformation
introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to
previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et
al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the
generalized application of the Helmholtz theorem in vector calculus. We then
show that systems described by ordinary stochastic differential equations with
white noise can be mapped to thermostated Hamiltonian systems. A steady-state
of a dissipative system corresponds to the equilibrium state of the
corresponding Hamiltonian system. These results provides a solid theoretical
ground for corresponding studies on nonequilibrium dynamics, especially on
nonequilibrium steady state. The mapping permits the application of established
techniques and results for Hamiltonian systems to dissipative non-Hamiltonian
systems, those for thermodynamic equilibrium states to nonequilibrium steady
states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A:
Math & Theo
The Integrated Medical Model: Statistical Forecasting of Risks to Crew Health and Mission Success
The Integrated Medical Model (IMM) helps capture and use organizational knowledge across the space medicine, training, operations, engineering, and research domains. The IMM uses this domain knowledge in the context of a mission and crew profile to forecast crew health and mission success risks. The IMM is most helpful in comparing the risk of two or more mission profiles, not as a tool for predicting absolute risk. The process of building the IMM adheres to Probability Risk Assessment (PRA) techniques described in NASA Procedural Requirement (NPR) 8705.5, and uses current evidence-based information to establish a defensible position for making decisions that help ensure crew health and mission success. The IMM quantitatively describes the following input parameters: 1) medical conditions and likelihood, 2) mission duration, 3) vehicle environment, 4) crew attributes (e.g. age, sex), 5) crew activities (e.g. EVA's, Lunar excursions), 6) diagnosis and treatment protocols (e.g. medical equipment, consumables pharmaceuticals), and 7) Crew Medical Officer (CMO) training effectiveness. It is worth reiterating that the IMM uses the data sets above as inputs. Many other risk management efforts stop at determining only likelihood. The IMM is unique in that it models not only likelihood, but risk mitigations, as well as subsequent clinical outcomes based on those mitigations. Once the mathematical relationships among the above parameters are established, the IMM uses a Monte Carlo simulation technique (a random sampling of the inputs as described by their statistical distribution) to determine the probable outcomes. Because the IMM is a stochastic model (i.e. the input parameters are represented by various statistical distributions depending on the data type), when the mission is simulated 10-50,000 times with a given set of medical capabilities (risk mitigations), a prediction of the most probable outcomes can be generated. For each mission, the IMM tracks which conditions occurred and decrements the pharmaceuticals and supplies required to diagnose and treat these medical conditions. If supplies are depleted, then the medical condition goes untreated, and crew and mission risk increase. The IMM currently models approximately 30 medical conditions. By the end of FY2008, the IMM will be modeling over 100 medical conditions, approximately 60 of which have been recorded to have occurred during short and long space missions
Thermodynamic Field Theory with the Iso-Entropic Formalism
A new formulation of the thermodynamic field theory (TFT) is presented. In
this new version, one of the basic restriction in the old theory, namely a
closed-form solution for the thermodynamic field strength, has been removed. In
addition, the general covariance principle is replaced by Prigogine's
thermodynamic covariance principle (TCP). The introduction of TCP required the
application of an appropriate mathematical formalism, which has been referred
to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine
Universal Criterion of Evolution, via geometrical arguments, is proven. A new
set of thermodynamic field equations, able to determine the nonlinear
corrections to the linear ("Onsager") transport coefficients, is also derived.
The geometry of the thermodynamic space is non-Riemannian tending to be
Riemannian for hight values of the entropy production. In this limit, we obtain
again the same thermodynamic field equations found by the old theory.
Applications of the theory, such as transport in magnetically confined plasmas,
materials submitted to temperature and electric potential gradients or to
unimolecular triangular chemical reactions can be found at references cited
herein.Comment: 35 page
Macroscopic fluctuation theory
Stationary non-equilibrium states describe steady flows through macroscopic
systems. Although they represent the simplest generalization of equilibrium
states, they exhibit a variety of new phenomena. Within a statistical mechanics
approach, these states have been the subject of several theoretical
investigations, both analytic and numerical. The macroscopic fluctuation
theory, based on a formula for the probability of joint space-time fluctuations
of thermodynamic variables and currents, provides a unified macroscopic
treatment of such states for driven diffusive systems. We give a detailed
review of this theory including its main predictions and most relevant
applications.Comment: Review article. Revised extended versio
Considering the role of cognitive control in expert performance
© 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition
'H, I, J, K, L, M, N, O, PEE! Get it? Pee!': Siblings' shared humour in childhood
Humour is a central feature of social interactions in childhood that has received little attention. In a sample of 86 7‐year‐old children (M age = 7.82 years, SD = 0.80), we investigated patterns and individual differences in spontaneous humour observed during free play with their older (M age = 9.55 years, SD = 0.88) or their younger sibling (M age = 5.87 years, SD = 0.96). We coded children's instances, categories, and responses to humour. We investigated the nature of children's humour on the dyadic and individual level. Humour was common, and siblings’ production of humour was highly interdependent between play partners. Dyadic humour differed according to structural features of the sibling relationship (age, gender composition), and 7‐year‐old focal children's humour varied according to gender. This study contributes to knowledge regarding the dyadic nature of children's humour and individual patterns of humour beyond the preschool years
Recommended from our members
Environmental Molecular Sciences Institute support for the Center for Environmental Molecular Sciences
This project is investigating the chemical processes that govern actinide sequestration in grout materials with the goal of determining the long-term behavior of grouts used to stabilize actinides in source-terms such as high level waste tank heals. Two grouts contained portland cement, blast furnace slag and fly ash, with one formulation containing zeolite and the other fluorapatite. Earlier experimental work was conducted with funds from DOE/West Valley. CEMS funding allowed further exploration of grout behavior, beyond the scope of the original work which consisted of both batch and flow-through column experiments. The primary focus was the late stage behavior of actinides in the grout system when it is expected to be open to the atmosphere and groundwater, resulting in decreases of pH and interactions of U (and other elements) with dissolved carbonate
Joint-action coordination in transferring objects
Here we report a study of joint-action coordination in transferring objects. Fourteen dyads were asked to repeatedly reposition a cylinder in a shared workspace without using dialogue. Variations in task constraints concerned the size of the two target regions in which the cylinder had to be (re)positioned and the size and weight of the transferred cylinder. Movements of the wrist, index finger and thumb of both actors were recorded by means of a 3D motion-tracking system. Data analyses focused on the interpersonal transfer of lifting-height and movement-speed variations. Whereas the analyses of variance did not reveal any interpersonal transfer effects targeted data comparisons demonstrated that the actor who fetched the cylinder from where the other actor had put it was systematically less surprised by cylinder-weight changes than the actor who was first confronted with such changes. In addition, a moderate, accuracy-constraint independent adaptation to each other’s movement speed was found. The current findings suggest that motor resonance plays only a moderate role in collaborative motor control and confirm the independency between sensorimotor and cognitive processing of action-related information
- …