1,426 research outputs found

    Correlations of electromagnetic fields in chaotic cavities

    Full text link
    We consider the fluctuations of electromagnetic fields in chaotic microwave cavities. We calculate the transversal and longitudinal correlation function based on a random wave assumption and compare the predictions with measurements on two- and three-dimensional microwave cavities.Comment: Europhys style, 8 pages, 3 figures (included

    Two Component Heat Diffusion Observed in CMR Manganites

    Full text link
    We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.Comment: 6 pages, 5 figures http://link.aps.org/doi/10.1103/PhysRevB.81.064434 v2: Abstract correcte

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    Influence of strain on magnetization and magnetoelectric effect in La0.7A0.3MnO3 / PMN-PT(001) (A = Sr; Ca)

    Full text link
    We investigate the influence of a well-defined reversible biaxial strain <=0.12 % on the magnetization (M) of epitaxial ferromagnetic manganite films. M has been recorded depending on temperature, strain and magnetic field in 20 - 50 nm thick films. This is accomplished by reversibly compressing the isotropic in-plane lattice parameter of the rhombohedral piezoelectric 0.72PMN-0.28PT (001) substrates by application of an electric field E <= 12 kV cm-1. The magnitude of the total variable in-plane strain has been derived. Strain-induced shifts of the ferromagnetic Curie temperature (Tc) of up to 19 K were found in La0.7Sr0.3MnO3 (LSMO) and La0.7Ca0.3MnO3 films and are quantitatively analysed for LSMO within a cubic model. The observed large magnetoelectric coupling coefficient alpha=mu0 dM/dE <= 6 10-8 s m-1 at ambient temperature results from the strain-induced M change in the magnetic-film-ferroelectric-substrate system. It corresponds to an enhancement of mu0 DeltaM <= 19 mT upon biaxial compression of 0.1 %. The extraordinary large alpha originates from the combination of three crucial properties: (i) the strong strain dependence of M in the ferromagnetic manganites, (ii) large piezo-strain of the PMN-PT substrates and (iii) effective elastic coupling at the film-substrate interface.Comment: 15 pages, 6 figures, 1 tabl

    The 14C(n,g) cross section between 10 keV and 1 MeV

    Get PDF
    The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV

    Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management

    Get PDF
    Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management

    Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis

    Get PDF
    Background: Although common and often disabling in multiple sclerosis (MS), visual dysfunction is currently not adequately accounted for in both clinical routine and MS trials. Sloan low contrast letter acuity (SLCLA) is a standardised chart-based measure of visual function particular at low contrast and has been suggested as additional visual component to the Multiple Sclerosis Functional Composite (MSFC). Here, we evaluate the relations between SLCLA, retinal integrity, MSFC, and quality of life (QoL) in MS patients. Methods: Cross-sectional analysis of retinal nerve fibre layer (RNFL) thickness, MSFC, SLCLA (2.5% and 1.25% contrast levels), visual evoked potentials, and QoL (Short Form (SF) 36, National Eye Institute Visual Functioning Questionnaire (NEIVFQ)) using baseline data of 92 MS patients from an ongoing prospective longitudinal trial. Relations between RNFL thickness or P100 latency and SLCLA were analysed using generalised estimating equations (GEE) accounting for intra-individual inter-eye dependencies and corrected for age, gender, and history of optic neuritis. Pearson’s correlations were used to assess relations between SLCLA, MSFC, and QoL. Results: SLCLA reflected RNFL thickness (p = 0.021) and P100 latency (p = 0.004) and predicted vision-related QoL, reflected by the NEIVFQ39 subscores “general vision” and “near activities” (p < 0.008 for both). SLCLA did not predict general QoL reflected by SF36. Implementing SLCLA into MSFC, thus creating a four-dimensional MSFC4, captured aspects of disability reflected by the NEIVFQ39 subscores “general vision” (r = 0.42, p < 0.0001) and “near activity” (r = 0.3, p = 0.014) which were not captured by standard MSFC3. Conclusions: SLCLA at 2.5% and 1.25% contrast levels correlates with retinal morphology and P100 latency and predicts some aspects of vision-related QoL in MS. More importantly, using a prospective cross-sectional approach we provide evidence that extending the MSFC by SLCLA as an additional visual component increases the performance of MSFC to capture MS-related disability. Longitudinal data on the relation between SLCLA, MSFC, and QoL will be available in the near future
    • …
    corecore