2,309 research outputs found

    Predicting late recurrence in ER-positive breast cancer.

    Get PDF

    Breast density predicts endocrine treatment outcome in the adjuvant setting

    Get PDF
    PMCID: PMC3680935See related research article by Kim et al., http://breast-cancer-research.com/content/14/4/R10

    Risk Models for Breast Cancer and Their Validation.

    Get PDF
    Strategies to prevent cancer and diagnose it early when it is most treatable are needed to reduce the public health burden from rising disease incidence. Risk assessment is playing an increasingly important role in targeting individuals in need of such interventions. For breast cancer many individual risk factors have been well understood for a long time, but the development of a fully comprehensive risk model has not been straightforward, in part because there have been limited data where joint effects of an extensive set of risk factors may be estimated with precision. In this article we first review the approach taken to develop the IBIS (Tyrer-Cuzick) model, and describe recent updates. We then review and develop methods to assess calibration of models such as this one, where the risk of disease allowing for competing mortality over a long follow-up time or lifetime is estimated. The breast cancer risk model model and calibration assessment methods are demonstrated using a cohort of 132,139 women attending mammography screening in the State of Washington, USA

    Use of the concordance index for predictors of censored survival data.

    Get PDF
    The concordance index is often used to measure how well a biomarker predicts the time to an event. Estimators of the concordance index for predictors of right-censored data are reviewed, including those based on censored pairs, inverse probability weighting and a proportional-hazards model. Predictive and prognostic biomarkers often lose strength with time, and in this case the aforementioned statistics depend on the length of follow up. A semi-parametric estimator of the concordance index is developed that accommodates converging hazards through a single parameter in a Pareto model. Concordance index estimators are assessed through simulations, which demonstrate substantial bias of classical censored-pairs and proportional-hazards model estimators. Prognostic biomarkers in a cohort of women diagnosed with breast cancer are evaluated using new and classical estimators of the concordance index.This work was funded by Cancer Research UK (grant number C569/A16891)

    A prognostic and predictive computational pathology immune signature for ductal carcinoma in situ: retrospective results from a cohort within the UK/ANZ DCIS trial

    Get PDF
    Background The density of tumour-infiltrating lymphocytes (TILs) could be prognostic in ductal carcinoma in situ (DCIS). However, manual TIL quantification is time-consuming and suffers from interobserver and intraobserver variability. In this study, we developed a TIL-based computational pathology biomarker and evaluated its association with the risk of recurrence and benefit of adjuvant treatment in a clinical trial cohort. Methods In this retrospective cohort study, a computational pathology pipeline was developed to generate a TIL-based biomarker (CPath TIL categories). Subsequently, the signature underwent a masked independent validation on H&E-stained whole-section images of 755 patients with DCIS from the UK/ANZ DCIS randomised controlled trial. Specifically, continuous biomarker CPath TIL score was calculated as the average TIL density in the DCIS microenvironment and dichotomised into binary biomarker CPath TIL categories (CPath TIL-high vs CPath TIL-low) using the median value as a cutoff. The primary outcome was ipsilateral breast event (IBE; either recurrence of DCIS [DCIS-IBE] or invasive progression [I-IBE]). The Cox proportional hazards model was used to estimate the hazard ratio (HR). Findings CPath TIL-score was evaluable in 718 (95%) of 755 patients (151 IBEs). Patients with CPath TIL-high DCIS had a greater risk of IBE than those with CPath TIL-low DCIS (HR 2·10 [95% CI 1·39–3·18]; p=0·0004). The risk of I-IBE was greater in patients with CPath TIL-high DCIS than those with CPath TIL-low DCIS (3·09 [1·56–6·14]; p=0·0013), and the risk of DCIS-IBE was non-significantly higher in those with CPath TIL-high DCIS (1·61 [0·95–2·72]; p=0·077). A significant interaction (pinteraction=0·025) between CPath TIL categories and radiotherapy was observed with a greater magnitude of radiotherapy benefit in preventing IBE in CPath TIL-high DCIS (0·32 [0·19–0·54]) than CPath TIL-low DCIS (0·40 [0·20–0·81]). Interpretation High TIL density is associated with higher recurrence risk—particularly of invasive recurrence—and greater radiotherapy benefit in patients with DCIS. Our TIL-based computational pathology signature has a prognostic and predictive role in DCIS
    • …
    corecore