369 research outputs found

    Equilibrum Composition of Thermal Plasma with Copper and Chromium Vapours Admixtures

    Get PDF
    Thermal plasma of electric arc is widely used in various technological applications: welding, cutting, lamps, spraying, protection of electrical installations, etc. Process efficiency is defined by different parameters that determine arc operation and influence the energy transfer within the medium. All energy exchanges depend on the medium, which is modified by the presence of the arc and more particularly by the appearance of new species from contact erosion. Sintered Cu-Cr composites are widely used as electrical contacts for vacuum circuit breakers. These materials take advantage of the high thermal and electrical conductivity of Cu and of the refractory and oxygen getter properties of reinforcing Cr particles. The aim of this paper is to give results of the calculation of the equilibrium composition of argon and air plasma with various admixtures of Cu and Cr

    Estimation of the Intensively Blasted Electric Arc Model Sensitivity to Selected Variables

    Get PDF
    Results of measurements carried out on the fabricated experimental modular-type arc heater serve as input data for the designed simplified model of the intensively blasted electric arc burning in argon inside the cylindrical arc heater's anode channel. The axial dependence of the arc temperature and radius is expressed using the exponent, the current density on the cathode tip and the arc temperature at the end of the near-cathode boundary layer. These quantities form the vector of state variables that is sought to minimize the value of the objective function expressing the deviations between measured and computed values. On a typical example, the paper demonstrates the sensitivity of the modelling to individual state variables

    Biosecurity on poultry farms from on-farm fluidized bed combustion and energy recovery from poultry litter

    Get PDF
    peer-reviewedThe spreading of poultry litter in recent years has led to a serious increase in levels of eutrophication, nitrate leaching, high Biological Oxygen Demand (BOD), ammonia toxicity, high chlorine concentrations and pathogen contamination. The review presented here details the optimum standards that should be met when storing litter for On-Farm Fluidized Bed Combustion. Storage conditions are paramount to a fuel combusting to its highest possible potential. Safety measures such as the prevention of leaching and spontaneous combustion must be adhered to, so too should the prevention and containment of possible diseases and pathogens to minimize the effects of contamination

    Alternative Splicing Events Identified in Human Embryonic Stem Cells and Neural Progenitors

    Get PDF
    Human embryonic stem cells (hESCs) and neural progenitor (NP) cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS), a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol), to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2) gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced, leading to new insights into the complexity of AS in human embryonic stem cells and their transition to neural stem cells

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Tricholithobezoar Causing Gastric Perforation

    Get PDF
    A bezoar is an intraluminal mass formed by the accumulation of undigested material in the gastrointestinal tract. Trichobezoar is a rare condition seen almost exclusively in young women with trichotillomania and trichotillophagia. When not recognized, the trichobezoar continues to grow, which increases the risk of severe complications such as gastric ulceration and even perforation. Formation of a gallstone within the trichobezoar (tricholithobezoar) is an event that has not yet been described. We report the case of a 22-year-old woman admitted to the emergency room with signals and symptoms of an epigastric mass and perforative acute abdomen. Radiological study revealed bilateral pneumoperitoneum. Personal history revealed depressive syndrome, trichotillomania and trichophagia. With a diagnosis of visceral perforation, an urgent exploratory laparotomy was performed. This confirmed the diagnosis of gastric perforation due to a large trichobezoar with the formation of a gastrolith that was removed by anterior gastrotomy. Biochemical study of the gastric stone revealed that it was composed of bile salts. There were no complications. The patient was discharged on the 5th postoperative day and was referred for psychiatric treatment

    Peer Support For Self-Management Of Diabetes Improved Outcomes In International Settings

    Get PDF
    Self-management of diabetes is essential to reducing the risks of associated disabilities. But effective self-management is often short-lived. Peers can provide the kind of ongoing support that is needed for sustained self-management of diabetes. In this context, peers are nonprofessionals who have diabetes or close familiarity with its management. Key functions of effective peer support include assistance in daily management, social and emotional support, linkage to clinical care, and ongoing availability of support. Using these four functions as a template of peer support, project teams in Cameroon, South Africa, Thailand, and Uganda developed and then evaluated peer support interventions for adults with diabetes. Our initial assessment found improvements in symptom management, diet, blood pressure, body mass index, and blood sugar levels for many of those taking part in the programs. For policy makers, the broader message is that by emphasizing the four key peer support functions, diabetes management programs can be successfully introduced across varied cultural settings and within diverse health systems

    Two-dimensional electrophoretic comparison of metastatic and non-metastatic human breast tumors using in vitro cultured epithelial cells derived from the cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast carcinomas represent a heterogeneous group of tumors diverse in behavior, outcome, and response to therapy. Identification of proteins resembling the tumor biology can improve the diagnosis, prediction, treatment selection, and targeting of therapy. Since the beginning of the post-genomic era, the focus of molecular biology gradually moved from genomes to proteins and proteomes and to their functionality. Proteomics can potentially capture dynamic changes in protein expression integrating both genetic and epigenetic influences.</p> <p>Methods</p> <p>We prepared primary cultures of epithelial cells from 23 breast cancer tissue samples and performed comparative proteomic analysis. Seven patients developed distant metastases within three-year follow-up. These samples were included into a metastase-positive group, the others formed a metastase-negative group. Two-dimensional electrophoretical (2-DE) gels in pH range 4–7 were prepared. Spot densities in 2-DE protein maps were subjected to statistical analyses (R/maanova package) and data-mining analysis (GUHA). For identification of proteins in selected spots, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed.</p> <p>Results</p> <p>Three protein spots were significantly altered between the metastatic and non-metastatic groups. The correlations were proven at the 0.05 significance level. Nucleophosmin was increased in the group with metastases. The levels of 2,3-trans-enoyl-CoA isomerase and glutathione peroxidase 1 were decreased.</p> <p>Conclusion</p> <p>We have performed an extensive proteomic study of mammary epithelial cells from breast cancer patients. We have found differentially expressed proteins between the samples from metastase-positive and metastase-negative patient groups.</p
    corecore