35 research outputs found

    Cigarette smoke induces β2-integrin-dependent neutrophil migration across human endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking induces peripheral inflammatory responses in all smokers and is the major risk factor for neutrophilic lung disease such as chronic obstructive pulmonary disease. The aim of this study was to investigate the effect of cigarette smoke on neutrophil migration and on β<sub>2</sub>-integrin activation and function in neutrophilic transmigration through endothelium.</p> <p>Methods and results</p> <p>Utilizing freshly isolated human PMNs, the effect of cigarette smoke on migration and β<sub>2</sub>-integrin activation and function in neutrophilic transmigration was studied. In this report, we demonstrated that cigarette smoke extract (CSE) dose dependently induced migration of neutrophils <it>in vitro</it>. Moreover, CSE promoted neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that Mac-1 (CD11b/CD18) is responsible for the cigarette smoke-induced firm adhesion of neutrophils to fibrinogen. Furthermore, neutrophils transmigrated through endothelium by cigarette smoke due to the activation of β<sub>2</sub>-integrins, since pre-incubation of neutrophils with functional blocking antibodies against CD11b and CD18 attenuated this transmigration.</p> <p>Conclusion</p> <p>This is the first study to describe that cigarette smoke extract induces a direct migratory effect on neutrophils and that CSE is an activator of β<sub>2</sub>-integrins on the cell surface. Blocking this activation of β<sub>2</sub>-integrins might be an important target in cigarette smoke induced neutrophilic diseases.</p

    Reticulocyte analysis using flow cytometry

    No full text

    Comparison of the survival kinetics of a strain of pseudomonas putida in the rhizosphere of two different plant species

    No full text
    National audienc

    Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads

    No full text
    Suppression of soilborne disease by fluorescent pseudomonads may be inconsistent. Inefficient root colonization by the introduced bacteria is often responsible for this inconsistency. To better understand the bacterial traits involved in root colonization, the effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations was assessed. Fluorescent pseudomonads were isolated from an uncultivated soil and from rhizosphere, rhizoplane, and root tissue of flax and tomato cultivated in the same soil. Species and biovars were identified by classical biochemical and physiological tests. The ability of bacterial isolates to assimilate 147 different organic compounds and to show three different enzyme activities was assessed to determine their intraspecific phenotypic diversity. Numerical analysis of these characteristics allowed the clustering of isolates showing a high level (87.8%) of similarity. On the whole, the populations isolated from soil were different from those isolated from plants with respect to their phenotypic characteristics. The difference in bacteria isolated from uncultivated soil and from root tissue of flax was particularly marked. The intensity of plant selection was more strongly expressed with flax than with tomato plants. The selection was, at least partly, plant specific. The use of 10 different substrates allowed us to discriminate between flax and tomato isolates. Pseudomonas fluorescens biovars II, III, and V and Pseudomonas putida biovar A and intermediate type were well distributed among the isolates from soil, rhizosphere, and rhizoplane. Most isolates from root tissue of flax and tomato belonged to P. putida bv. A and to P. fluorescens bv. II, respectively. Phenotypic characterization of bacterial isolates was well correlated with genotypic characterization based on repetitive extragenic palindromic PCR fingerprinting
    corecore