1,784 research outputs found
Cleavage of the apoptosis inhibitor DIAP1 by the apical caspase DRONC in both normal and apoptotic drosophila cells
In Drosophila S2 cells, the apical caspase DRONC undergoes a low level of spontaneous autoprocessing. Unintended apoptosis is prevented by the inhibitor of apoptosis DIAP1, which targets the processed form of DRONC for degradation through its E3 ubiquitin protein ligase activity. Recent reports have demonstrated that shortly after the initiation of apoptosis in S2 cells, DIAP1 is cleaved following aspartate residue Asp-20 by the effector caspase DrICE. Here we report a novel caspase-mediated cleavage of DIAP1 in S2 cells. In both living and dying S2 cells, DIAP1 is cleaved by DRONC after glutamate residue Glu-205, located between the first and second BIR domains. The mutation of Glu-205 prevented the interaction of DIAP1 and processed DRONC but had no effect on the interaction with full-length DRONC. The mutation of Glu-205 also had a negative effect on the ability of overexpressed DIAP1 to prevent apoptosis stimulated by the proapoptotic protein Reaper or by UV light. These results expand our knowledge of the events that occur in the Drosophila apoptosome prior to and after receiving an apoptotic signal
The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC
Although loss of the inhibitor of apoptosis (LAP) protein DIAP1 has been shown to result in caspase activation and spontaneous cell death in Drosophila cells and embryos, the point at which DIAP1 normally functions to inhibit caspase activation is unknown. Depletion of the DIAP1 protein in Drosophila S2 cells or the Sf-IAP protein in Spodoptera frugiperda Sf21 cells by RNA interference (RNAi) or cycloheximide treatment resulted in rapid and widespread caspase-dependent apoptosis. Co-silencing of dronc or dark largely suppressed this apoptosis, indicating that DIAP1 is normally required to inhibit an activity dependent on these proteins. Silencing of dronc also inhibited DRICE processing following stimulation of apoptosis, demonstrating that DRONC functions as an apical caspase in S2 cells. Silencing of diap1 or treatment with UV light induced DRONC processing, which occurred in two steps. The first step appeared to occur continuously even in the absence of an apoptotic signal and to be dependent on DARK because full-length DRONC accumulated when dark was silenced in non-apoptotic cells. In addition, treatment with the proteasome inhibitor MG132 resulted in accumulation of this initially processed form of DRONC, but not full-length DRONC, in non-apoptotic cells. The second step in DRONC processing was observed only in apoptotic cells. These results indicate that the initial step in DRONC processing occurs continuously via a DARK-dependent mechanism in Drosophila cells and that DIAP1 is required to prevent excess accumulation of this first form of processed DRONC, presumably through its ability to act as a ubiquitin-protein ligase
Self-field effects upon the critical current density of flat superconducting strips
We develop a general theory to account self-consistently for self-field
effects upon the average transport critical current density Jc of a flat
type-II superconducting strip in the mixed state when the bulk pinning is
characterized by a field-dependent depinning critical current density Jp(B),
where B is the local magnetic flux density. We first consider the possibility
of both bulk and edge-pinning contributions but conclude that bulk pinning
dominates over geometrical edge-barrier effects in state-of-the-art YBCO films
and prototype second-generation coated conductors. We apply our theory using
the Kim model, JpK(B) = JpK(0)/(1+|B|/B0), as an example. We calculate Jc(Ba)
as a function of a perpendicular applied magnetic induction Ba and show how
Jc(Ba) is related to JpK(B). We find that Jc(Ba) is very nearly equal to
JpK(Ba) when Ba > Ba*, where Ba* is the value of Ba that makes the net flux
density zero at the strip's edge. However, Jc(Ba) is suppressed relative to
JpK(Ba) at low fields when Ba < Ba*, with the largest suppression occurring
when Ba*/B0 is of order unity or larger.Comment: 9 pages, 4 figures, minor revisions to add four reference
Vortex trapping and expulsion in thin-film YBCO strips
A scanning SQUID microscope was used to image vortex trapping as a function
of the magnetic induction during cooling in thin-film YBCO strips for strip
widths W from 2 to 50 um. We found that vortices were excluded from the strips
when the induction Ba was below a critical induction Bc. We present a simple
model for the vortex exclusion process which takes into account the vortex -
antivortex pair production energy as well as the vortex Meissner and
self-energies. This model predicts that the real density n of trapped vortices
is given by n=(Ba-BK)/Phi0 with BK = 1.65Phi0/W^2 and Phi0 = h/2e the
superconducting flux quantum. This prediction is in good agreement with our
experiments on YBCO, as well as with previous experiments on thin-film strips
of niobium. We also report on the positions of the trapped vortices. We found
that at low densities the vortices were trapped in a single row near the
centers of the strips, with the relative intervortex spacing distribution width
decreasing as the vortex density increased, a sign of longitudinal ordering.
The critical induction for two rows forming in the 35 um wide strip was (2.89 +
1.91-0.93)Bc, consistent with a numerical prediction
Magnetic field of an in-plane vortex outside a layered superconductor
We present the solution to London's equations for the magnetic fields of a
vortex oriented parallel to the plane, and normal to a crystal face, of a
layered superconductor. These expressions account for flux spreading at the
superconducting surface, which can change the apparent size of the vortex along
the planes by as much as 30%. We compare these expressions with experimental
results.Comment: 13 pages, 5 figure
Metastability and uniqueness of vortex states at depinning
We present results from numerical simulations of transport of vortices in the
zero-field cooled (ZFC) and the field-cooled (FC) state of a type-II
superconductor. In the absence of an applied current , we find that the FC
state has a lower defect density than the ZFC state, and is stable against
thermal cycling. On the other hand, by cycling , surprisingly we find that
the ZFC state is the stable state. The FC state is metastable as manifested by
increasing to the depinning current , in which case the FC state
evolves into the ZFC state. We also find that all configurations acquire a
unique defect density at the depinning transition independent of the history of
the initial states.Comment: 4 pages, 4 figures. Problem of page size correcte
Reducing microwave loss in superconducting resonators due to trapped vortices
Microwave resonators with high quality factors have enabled many recent
breakthroughs with superconducting qubits and photon detectors, typically
operated in shielded environments to reduce the ambient magnetic field.
Insufficient shielding or pulsed control fields can introduce vortices, leading
to reduced quality factors, although increased pinning can mitigate this
effect. A narrow slot etched into the resonator surface provides a
straightforward method for pinning enhancement without otherwise affecting the
resonator. Resonators patterned with such a slot exhibited over an order of
magnitude reduction in the excess loss due to vortices compared with identical
resonators from the same film with no slot
- …