5 research outputs found

    Texture and topography analysis of doxycycline hyclate thermosensitive systems comprising zinc oxide

    No full text
    To characterize the thermal behavior and texture analysis of doxycycline hyclate thermosensitive gels developed for periodontitis treatment containing zinc oxide prepared by using poloxamer (Lutrol ® F127) as polymeric material and N-methyl pyrrolidone was used as cosolvent. The thermosensitive gel comprising doxycycline hyclate, Lutrol® F127, and N-methyl pyrrolidone were characterized for the thermal behavior and texture analysis. The topography of the system after the dissolution test was characterized with scanning electron microscope. Differential scanning calorimetric thermogram exhibited the endothermic peaks in the systems containing high amount of N-methyl pyrrolidone in solvent. The sol-gel transition temperature of the systems decreased as the zinc oxide amount was increased. The addition of doxycycline hyclate, zinc oxide, and N-methyl pyrrolidone affected the syringeability of systems. The addition of zinc oxide into the doxycycline hyclate-Lutrol ® F127 systems decreased the diameter of inhibition zone against Staphylococcus aureus, Escherichia coli, and Candida albicans since zinc oxide decreased the diffusion and prolonged release of doxycycline hyclate. From scanning electron microscope analysis, the porous surface of 20% w/w Lutrol® F127 system was notably different from that of gel comprising doxycycline hyclate which had interconnected pores and smooth surfaces. The number of pores was decreased with increasing zinc oxide and the porous structure was smaller and more compact. Therefore, the addition of zinc oxide could increase the syringeability of doxycycline hyclate-Lutrol® F127 system with the temperature dependence. Zinc oxide decreased inhibition zone against test microbes because of prolongation of doxycycline hyclate release and reduced size of continuous cells. Furthermore, zinc oxide also increased the compactness of wall surfaces of Lutrol® F127

    Attenuation of oxidative stress in U937 cells by polyphenolic-rich bark fractions of Burkea africana and Syzygium cordatum

    No full text
    BACKGROUND: Oxidative stress has been implicated in the progression of various diseases, which may result in the depletion of endogenous antioxidants. Exogenous supplementation with antioxidants could result in increased protection against oxidative stress. As concerns have been raised regarding synthetic antioxidant usage, the identification of alternative treatments is justified. The aim of the present study was to determine the antioxidant efficacy of Burkea africana and Syzygium cordatum bark extracts in an in vitro oxidative stress model. METHODS: Cytotoxicity of crude aqueous and methanolic extracts, as well as polyphenolic-rich fractions, was determined in C2C12 myoblasts, 3T3-L1 pre-adipocytes, normal human dermal fibroblasts and U937 macrophage-like cells using the neutral red uptake assay. Polyphenolic content was determined using the Folin-Ciocalteau and aluminium trichloride assays, and antioxidant activity using the Trolox Equivalence Antioxidant Capacity and DPPH assays. The extracts efficacy against oxidative stress in AAPH-exposed U937 cells was assessed with regards to reactive oxygen species generation, cytotoxicity, apoptosis, lipid peroxidation and reduced glutathione depletion. RESULTS: B. africana and S. cordatum showed enrichment of polyphenols from the aqueous extract, to methanolic extract, to polyphenolic-rich fractions. Antioxidant activity followed the same trend, which correlated well with the increased concentration of polyphenols, and was between two- to three-fold stronger than the Trolox antioxidant control. Both plants had superior activity compared to ascorbic acid in the DPPH assay. Polyphenolic-rich fractions were most toxic to the 3T3-L1 (IC(50)’s between 13 and 21 μg/ml) and C2C12 (IC(50)’s approximately 25 μg/ml) cell lines, but were not cytotoxic in the U937 and normal human dermal fibroblasts cultures. Free radical-induced generation of reactive oxygen species (up to 80%), cytotoxicity (up to 20%), lipid peroxidation (up to 200%) and apoptosis (up to 60%) was successfully reduced by crude extracts of B. africana and the polyphenolic-rich fractions of both plants. The crude extracts of S. cordatum were not as effective in reducing cytotoxic parameters. CONCLUSION: Although oxidative stress was attenuated in U937 cells, cytotoxicity was observed in the 3T3-L1 and C2C12 cell lines. Further isolation and purification of polyphenolic-fractions could increase the potential use of these extracts as supplements by decreasing cytotoxicity and maintaining antioxidant quality
    corecore