421 research outputs found
Load proportional safety brake
This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection
A Wake Detector for Wind Farm Control
The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear
Wake center position tracking using downstream wind turbine hub loads
Having an improved awareness of the flow within a wind farm is useful for power harvesting maximization, load minimization and design of wind farm layout. Local flow information at each wind turbine location can be obtained by using the response of the wind turbines, which are consequently used as distributed sensors. This paper proposes the use of hub loads to track the position of wakes within a wind farm. Simulation experiments conducted within a high-fidelity aeroservoelastic environment demonstrate the performance of the new method
Wind shear estimation and wake detection by rotor loads - First wind tunnel verification
The paper describes a simple method for detecting presence and location of a wake affecting a downstream wind turbine operating in a wind power plant. First, the local wind speed and shear experienced by the wind turbine are estimated by the use of rotor loads and other standard wind turbine response data. Then, a simple wake deficit model is used to determine the lateral position of the wake with respect to the affected rotor. The method is verified in a boundary layer wind tunnel using two instrumented scaled wind turbine models, demonstrating its effectiveness
Biofilm inhibition of Inula viscosa (L.) Aiton and Globularia alypum L. extracts against Candida infectious pathogens and In vivo action on galleria mellonella model
The increasing importance of fungal infections has fueled the search for new beneficial alternatives substance from plant extracts. The current study investigates the antifungal and antibiofilm activity of Inula viscosa (L.) Aiton and Globularia alypum (L.) leaves extracts against Candida both in vitro and in vivo. The inhibition of planktonic and sessile Candida albicans and Candida glabrata growth using both leaf extracts are evaluated. Moreover; an in vivo infection model using Galleria mellonella larvae; infected and treated with the extracts are performed. All extracts show fungicidal activity; with a minimum fungicidal concentration (MFC) ranging from 128 to 512 mu g mL(-1) against the two selected strains of Candida. In particular, the best results are obtained with methanolic extract ofI. viscosa and G. alypum with an MFC value of 128 mu g mL(-1). The extracts are capable to prevent 90% of biofilm development at minor concentrations ranging from 100.71 +/- 2.49 mu g mL(-1) to 380.4 +/- 0.92 mu g mL(-1). In vivo, tests on Galleria mellonella larvae show that the extracts increase the survival of the larvae infected with Candida. The attained results reveal that I. viscosa and G. alypum extracts may be considered as new antifungal agents and biofilm inhibiting agents for the pharmaceutical and agro-food field
Co-Infections by Fusarium circinatum and Phytophthora spp. on Pinus radiata: Complex Phenotypic and Molecular Interactions
This study investigated the complex phenotypic and genetic response of Monterey pine (Pinus radiata) seedlings to co-infections by F. circinatum, the causal agent of pine pitch canker disease, and the oomycetes Phytophthora xcambivora and P. parvispora. Monterey pine seedlings were wound-inoculated with each single pathogen and with the combinations F. circinatum/P. xcambivora and F. circinatum/P. parvispora. Initially, seedlings inoculated only with F. circinatum showed less severe symptoms than seedlings co-inoculated or inoculated only with P. xcambivora or P. parvispora. However, 30 days post-inoculation (dpi), all inoculated seedlings, including those inoculated only with F. circinatum, showed severe symptoms with no significant differences among treatments. The transcriptomic profiles of three genes encoding pathogenesis-related proteins, i.e., chitinase (PR3), thaumatin-like protein (PR5), phenylalanine ammonia-lyase (PAL), and the pyruvate decarboxylase (PDC)-encoding gene were analyzed at various time intervals after inoculation. In seedlings inoculated with single pathogens, F. circinatum stimulated the up-regulation of all genes, while between the two oomycetes, only P. xcambivora induced significant up-regulations. In seedlings co-inoculated with F. circinatum and P.xcambivora or P. parvispora none of the genes showed a significant over-expression 4 dpi. In contrast, at 11 dpi, significant up-regulation was observed for PR5 in the combination F. circinatum/P.xcambivora and PDC in the combination F. circinatum/P. parvispora, thus suggesting a possible synergism of multiple infections in triggering this plant defense mechanism
New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations
The current model of the basal ganglia system based on the 'direct', 'indirect' and 'hyperdirect' pathways provides striking predictions about basal ganglia function that have been used to develop deep brain stimulation approaches for Parkinson's disease and dystonia. The aim of this review is to challenge this scheme in light of new tract tracing information that has recently become available from the human brain using MRI-based tractography, thus providing a novel perspective on the basal ganglia system. We also explore the implications of additional direct pathways running from cortex to basal ganglia and between basal ganglia and cerebellum in the pathophysiology of movement disorders
- …