5,008 research outputs found

    Carbonic anhydrase iii s-glutathionylation is necessary for anti-oxidant activity

    Get PDF

    The Keck Aperture Masking Experiment: spectro-interferometry of 3 Mira Variables from 1.1 to 3.8 microns

    Full text link
    We present results from a spectro-interferometric study of the Miras o Cet, R Leo and W Hya obtained with the Keck Aperture Masking Experiment from 1998 Sep to 2002 Jul. The spectrally dispersed visibility data permit fitting with circularly symmetric brightness profiles such as a simple uniform disk. The stellar angular diameter obtained over up to ~ 450 spectral channels spaning the region 1.1-3.8 microns is presented. Use of a simple uniform disk brightness model facilitates comparison between epochs and with existing data and theoretical models. Strong size variations with wavelength were recorded for all stars, probing zones of H2O, CO, OH, and dust formation. Comparison with contemporaneous spectra extracted from our data show a strong anti-correlation between the observed angular diameter and flux. These variations consolidate the notion of a complex stellar atmosphere consisting of molecular shells with time-dependent densities and temperatures. Our findings are compared with existing data and pulsation models. The models were found to reproduce the functional form of the wavelength vs. angular diameter curve well, although some departures are noted in the 2.8-3.5 micron range.Comment: 10 pages, 10 figures Accepted to Ap

    Dynamical Mass of the Substellar Benchmark Binary HD 130948BC

    Full text link
    (Abridged) We present Keck, HST, and Gemini-North observations of the L4+L4 binary HD 130948BC which together span ~70% of the binary's orbital period. We determine a total dynamical mass of 0.109+/-0.002 Msun (114+/-2 Mjup). The flux ratio is near unity, so both components are unambiguously substellar for any plausible mass ratio. An independent constraint on the age of the system is available from the G2V primary HD 130948A. The available indicators suggest an age comparable to the Hyades, with the most precise age being 0.79 Gyr based on gyrochronology. Therefore, HD 130948BC is now a unique benchmark among field L and T dwarfs, with a well-determined mass, luminosity, and age. We find that substellar theoretical models disagree with our observations. Both components of HD 130948BC appear to be overluminous by a factor of ~2-3x compared to evolutionary models. The age of the system would have to be notably younger than the gyro age to ameliorate the luminosity disagreement. However, regardless of the adopted age, evolutionary and atmospheric models give inconsistent results, indicating systematic errors in at least one class of models, possibly both. The masses of HD 130948BC happen to be very near the theoretical mass limit for lithium burning, and thus measuring the differential lithium depletion between B and C will provide a uniquely discriminating test of theoretical models. The potential underestimate of luminosities by evolutionary models would have wide-ranging implications; therefore, a more refined age estimate for HD 130948A is critically needed.Comment: ApJ, accepted. Note that astro-ph posting date coincides with the periastron passage for this binar

    The Mass-Radius Relation Of Young Stars. I. Usco 5, An M4.5 Eclipsing Binary In Upper Scorpius Observed By K2

    Get PDF
    We present the discovery that UScoCTIO 5, a known spectroscopic binary in the Upper Scorpius star-forming region (P = 34 days, M-tot sin(i) = 0.64M(circle dot)), is an eclipsing system with both primary and secondary eclipses apparent in K2 light curves obtained during Campaign 2. We have simultaneously fit the eclipse profiles from the K2 light curves and the existing RV data to demonstrate that UScoCTIO 5 consists of a pair of nearly identical M4.5 stars with M-A = 0.329 +/- 0.002 M-circle dot, R-A = 0.834 +/- 0.006 R-circle dot, M-B = 0.317 +/- 0.002 M-circle dot, and R-B = 0.810 +/- 0.006 R-circle dot. The radii are broadly consistent with pre-main-sequence ages predicted by stellar evolutionary models, but none agree to within the uncertainties. All models predict systematically incorrect masses at the 25%-50% level for the HR diagram position of these mid-M dwarfs, suggesting significant modifications to mass-dependent outcomes of star and planet formation. The form of the discrepancy for most model sets is not that they predict luminosities that are too low, but rather that they predict temperatures that are too high, suggesting that the models do not fully encompass the physics of energy transport (via convection and/or missing opacities) and/or a miscalibration of the SpT-T-eff scale. The simplest modification to the models (changing T-eff to match observations) would yield an older age for this system, in line with the recently proposed older age of Upper Scorpius (tau similar to 11 Myr).NASA Science Mission directorateW. M. Keck FoundationAstronom
    corecore